Agricultural tree cover is declining globally, including the loss of large, scattered trees that function as keystone structures. Understanding the drivers of agricultural tree loss could help prevent further declines. However, the drivers of agricultural tree mortality vary across scales, from individual trees to landscapes, complicating efforts to quantify mortality risk.
View Article and Find Full Text PDFThe ecology of forest ecosystems depends on the composition of trees. Capturing fine-grained information on individual trees at broad scales provides a unique perspective on forest ecosystems, forest restoration, and responses to disturbance. Individual tree data at wide extents promises to increase the scale of forest analysis, biogeographic research, and ecosystem monitoring without losing details on individual species composition and abundance.
View Article and Find Full Text PDFPredicting forest recovery at landscape scales will aid forest restoration efforts. The first step in successful forest recovery is tree recruitment. Forecasts of tree recruit abundance, derived from the landscape-scale distribution of seed sources (i.
View Article and Find Full Text PDFForests provide biodiversity, ecosystem, and economic services. Information on individual trees is important for understanding forest ecosystems but obtaining individual-level data at broad scales is challenging due to the costs and logistics of data collection. While advances in remote sensing techniques allow surveys of individual trees at unprecedented extents, there remain technical challenges in turning sensor data into tangible information.
View Article and Find Full Text PDFForecasting rates of forest succession at landscape scales will aid global efforts to restore tree cover to millions of hectares of degraded land. While optical satellite remote sensing can detect regional land cover change, quantifying forest structural change is challenging. We developed a state-space modeling framework that applies Landsat satellite data to estimate variability in rates of natural regeneration between sites in a tropical landscape.
View Article and Find Full Text PDFEcology has reached the point where data science competitions, in which multiple groups solve the same problem using the same data by different methods, will be productive for advancing quantitative methods for tasks such as species identification from remote sensing images. We ran a competition to help improve three tasks that are central to converting images into information on individual trees: (1) crown segmentation, for identifying the location and size of individual trees; (2) alignment, to match ground truthed trees with remote sensing; and (3) species classification of individual trees. Six teams (composed of 16 individual participants) submitted predictions for one or more tasks.
View Article and Find Full Text PDFRemote sensing is increasingly needed to meet the critical demand for estimates of forest structure and composition at landscape to continental scales. Hyperspectral images can detect tree canopy properties, including species identity, leaf chemistry and disease. Tree growth rates are related to these measurable canopy properties but whether growth can be directly predicted from hyperspectral data remains unknown.
View Article and Find Full Text PDFWind disturbance can create large forest blowdowns, which greatly reduces live biomass and adds uncertainty to the strength of the Amazon carbon sink. Observational studies from within the central Amazon have quantified blowdown size and estimated total mortality but have not determined which trees are most likely to die from a catastrophic wind disturbance. Also, the impact of spatial dependence upon tree mortality from wind disturbance has seldom been quantified, which is important because wind disturbance often kills clusters of trees due to large treefalls killing surrounding neighbors.
View Article and Find Full Text PDFFire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions.
View Article and Find Full Text PDFSpecies identification and characterization in tropical environments is an emerging field in tropical remote sensing. Significant efforts are currently aimed at the detection of tree species, of levels of forest successional stages, and the extent of liana occurrence at the top of canopies. In this paper we describe our use of high resolution imagery from the Quickbird Satellite to estimate the flowering population of Tabebuia guayacan trees at Barro Colorado Island (BCI), in Panama.
View Article and Find Full Text PDFBackground: The movement patterns of wild animals depend crucially on the spatial and temporal availability of resources in their habitat. To date, most attempts to model this relationship were forced to rely on simplified assumptions about the spatiotemporal distribution of food resources. Here we demonstrate how advances in statistics permit the combination of sparse ground sampling with remote sensing imagery to generate biological relevant, spatially and temporally explicit distributions of food resources.
View Article and Find Full Text PDF