The development of a simple synthetic route to aldehyde functional poly(dimethylsiloxane) (PDMS) through oxidative C─C bond cleavage of terminal epoxide functions by periodic acid is presented first. Nuclear Magnetic Resonance (NMR) and Infrared spectroscopies revealed the full conversion of the PDMS terminal epoxides to aldehyde groups. This new aldehyde functional PDMS is then used to elaborate aliphatic self-healing materials through imine chemistry by reaction with an amine-terminated PDMS featuring urea moieties in its structure.
View Article and Find Full Text PDFWhen exposed to the geostationary orbit, polymeric materials tend to degrade on their surface due to the appearance of cracks. Implementing the self-healing concept in polymers going to space is a new approach to enhancing the lifespan of materials that cannot be replaced once launched. In this study, the elaboration of autonomous self-healing transparent poly(dimethylsiloxane) (PDMS) materials resistant to proton particles is presented.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2023
One-step sequence-selective block copolymerization requires stringent catalytic control of monomers relative activity and enchainment order. It has been especially rare for A B -type block copolymers from simple binary monomer mixtures. Here, ethylene oxide (EO) and N-sulfonyl aziridine (Az) compose a valid pair provided with a bicomponent metal-free catalyst.
View Article and Find Full Text PDFIn the emerging field of hybrid polymer/lipid vesicles, relatively few copolymers have been evaluated regarding their ability to form these structures and the resulting membrane properties have been scarcely studied. Here, we present the synthesis and self-assembly in solution of poly(dimethylsiloxane)--poly(ethylene oxide) diblock copolymers (PDMS--PEO). A library of different PDMS--PEO diblock copolymers was synthesized using ring-opening polymerization of hexamethylcyclotrisiloxane (D3) and further coupling with PEO chains via click chemistry.
View Article and Find Full Text PDFThe paper investigates the effect of adding a combination of rigid nanoparticles and core-shell rubber nanoparticles on the tensile, fracture mechanics, electrical and thermo-mechanical properties of epoxy resins. SiO nanoparticles, multi-walled carbon nanotubes (MWCNT's), as rigid nanofillers, and core-shell rubber (CSR) nanoparticles, as soft nanofillers were used with bisphenol-A-based epoxy resin. Further, the rigid fillers were added systematically with core-shell rubber nanoparticles to investigate the commingled effect of rigid nanofillers and soft CSR nanoparticles.
View Article and Find Full Text PDFThis work investigates the possibility of using cellulose nanocrystals (CNCs) as biobased nanoadditives in protective polydimethylsiloxane (PDMS) space coatings, to improve the thermal and optical performances of the material. CNCs produced from wood pulp were functionalized in different conditions with the objective to improve their dispersibility in the PDMS matrix, increase their thermal stability and provide photoactive functions. Polysiloxane, cinnamate, chloroacetate and trifluoroacetate moieties were accordingly anchored at the CNCs surface by silylation, using two different approaches, or acylation with different functional vinyl esters.
View Article and Find Full Text PDFThe ring-opening polymerization of N-tosyl aziridines, in the presence of 1,3-bis(isopropyl)-4,5(dimethyl)imidazol-2-ylidene as an organocatalyst and an N-tosyl secondary amine as initiator mimicking the growing chain, provides the first metal-free route to well defined poly(aziridine)s (PAz) and related PAz-based block copolymers.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2016
Nowadays, the synthesis of (semi)aromatic polymers from lignin derivatives is of major interest, as aromatic compounds are key intermediates in the manufacture of polymers and lignin is the main source of aromatic biobased substrates. Phenols with a variety of chemical structures can be obtained from lignin deconstruction; among them, vanillin and ferulic acid are the main ones. Depending on the phenol substrates, different chemical modifications and polymerization pathways are developed, leading to (semi)aromatic polymers covering a wide range of thermomechanical properties.
View Article and Find Full Text PDF