The highly conserved Notch pathway, a pillar of juxtacrine signaling, orchestrates intricate intercellular communication, governing diverse developmental and homeostatic processes through a tightly regulated cascade of proteolytic cleavages. This pathway, culminating in the migration of the Notch intracellular domain (NICD) to the nucleus and the subsequent activation of downstream target genes, exerts a profound influence on a plethora of molecular processes, including cell cycle progression, lineage specification, cell-cell adhesion, and fate determination. Accumulating evidence underscores the pivotal role of Notch dysregulation, encompassing both gain and loss-of-function mutations, in the pathogenesis of numerous human diseases.
View Article and Find Full Text PDFUsing Sso7d from as the DNA binding protein fused to Taq DNA polymerase at its amino terminus, we report the hyper-expression and a novel purification methodology of Sso7d-Taq polymerase (S-Taq) using aqueous two-phase extraction system followed by Ni-affinity chromatography. The utility of such a fusion enzyme in carrying out PCR of human genes from whole blood directly and in detecting hepatitis B virus from clinical samples is demonstrated in this article. We present data on the enhanced thermo-stability of S-Taq DNA polymerase over Taq DNA polymerase and also provide evidence of its higher stability with detergents in comparison to Taq polymerase.
View Article and Find Full Text PDF