Fanconi anemia (FA) is the most common inherited bone marrow failure disorder, caused by pathogenic variants in genes involved in the FA DNA repair pathway. In this issue of the JCI, two studies report three germline homozygous loss-of-function variants in FAAP100, a key component of the FA core complex, identified in three unrelated families. These variants result in severe developmental phenotypes that are among the most extreme reported in FA to date.
View Article and Find Full Text PDFOxidative stress (OS) is an established hallmark of cancer and neurodegenerative disorders (NDDs), which contributes to genomic instability and neuronal loss. This review explores the contrasting role of OS in cancer stem cells (CSCs) and NDDs. Elevated levels of reactive oxygen species (ROS) contribute to genomic instability and promote tumor initiation and progression in CSCs, while in NDDs such as Alzheimer's and Parkinson's disease, OS accelerates neuronal death and impairs cellular repair mechanisms.
View Article and Find Full Text PDFGap junctions allow the exchange of small molecules between cells. How this function could be used to promote cell growth is not yet fully understood. During Drosophila ovarian follicle development, germ cells, which are surrounded by epithelial somatic cells, undergo massive growth.
View Article and Find Full Text PDFThe highly conserved Notch pathway, a pillar of juxtacrine signaling, orchestrates intricate intercellular communication, governing diverse developmental and homeostatic processes through a tightly regulated cascade of proteolytic cleavages. This pathway, culminating in the migration of the Notch intracellular domain (NICD) to the nucleus and the subsequent activation of downstream target genes, exerts a profound influence on a plethora of molecular processes, including cell cycle progression, lineage specification, cell-cell adhesion, and fate determination. Accumulating evidence underscores the pivotal role of Notch dysregulation, encompassing both gain and loss-of-function mutations, in the pathogenesis of numerous human diseases.
View Article and Find Full Text PDFTranscriptional enhancer elements are responsible for orchestrating the temporal and spatial control over gene expression that is crucial for programming cell identity during development. Here we describe a novel enhancer element that is important for regulating the expression of Prox1 in lymphatic endothelial cells. This evolutionarily conserved enhancer is bound by key lymphatic transcriptional regulators including GATA2, FOXC2, NFATC1 and PROX1.
View Article and Find Full Text PDFBiochem Pharmacol
December 2022
Glycan is an essential molecule that controls and drives life in a precise direction. The paucity of research in glycobiology may impede the significance of its role in the pandemic guidelines. The SARS-CoV-2 spike protein is heavily glycosylated, with 22 putative N-glycosylation sites and 17 potential O-glycosylation sites discovered thus far.
View Article and Find Full Text PDFThere is increasing recognition that pathogenic germ line variants drive the development of hematopoietic cancers in many individuals. Currently, patients with hereditary hematologic malignancies (HHMs) receive similar standard therapies and hematopoietic stem cell transplant (HSCT) approaches as those with sporadic disease. We hypothesize that patients with myeloid malignancies and deleterious germ line predisposition variants have different posttransplant outcomes than those without such alleles.
View Article and Find Full Text PDFGATA2 deficiency syndrome (G2DS) is a rare autosomal dominant genetic disease predisposing to a range of symptoms, of which myeloid malignancy and immunodeficiency including recurrent infections are most common. In the last decade since it was first reported, there have been over 480 individuals identified carrying a pathogenic or likely pathogenic germline GATA2 variant with symptoms of G2DS, with 240 of these confirmed to be familial and 24 de novo. For those that develop myeloid malignancy (75% of all carriers with G2DS disease symptoms), the median age of onset is 17 years (range 0-78 years) and myelodysplastic syndrome is the first diagnosis in 75% of these cases with acute myeloid leukemia in a further 9%.
View Article and Find Full Text PDFBackground: Scaffold proteins support a variety of key processes during animal development. Mutant mouse for the MAGUK protein Discs large 5 (Dlg5) presents a general growth impairment and moderate morphogenetic defects.
Results: Here, we generated null mutants for Drosophila Dlg5 and show that it owns similar functions in growth and epithelial architecture.
Background: We report a large family with four successive generations, presenting with a complex phenotype of severe congenital neutropenia (SCN), partially penetrant monocytosis, and hearing loss of varying severity.
Methods: We performed whole exome sequencing to identify the causative variants. Sanger sequencing was used to perform segregation analyses on remaining family members.
The interactions among saprotrophic fungal species, as well as their interactions with environmental factors, may have a major influence on wood decay and carbon release in ecosystems. We studied the effect that decomposer diversity (species richness and assemblage composition) has on wood decomposition when the climatic variables and substrate quality vary simultaneously. We used two temperatures (16 and 21°C) and two humidity levels (70% and 90%) with two wood qualities (wood from managed and old-growth forests) of Pinus sylvestris.
View Article and Find Full Text PDFBiological and biomedical research relies on comprehensive understanding of protein-coding transcripts. However, the total number of human proteins is still unknown due to the prevalence of alternative splicing. In this paper, we detected 31,566 novel transcripts with coding potential by filtering our ab initio predictions with 50 RNA-seq datasets from diverse tissues/cell lines.
View Article and Find Full Text PDFDifferential splicing contributes to the vast complexity of mRNA transcripts and protein isoforms that are necessary for cellular homeostasis and response to developmental cues and external signals. The hematopoietic system provides an exquisite example of this. Recently, discovery of mutations in components of the spliceosome in various hematopoietic malignancies (HMs) has led to an explosion in knowledge of the role of splicing and splice factors in HMs and other cancers.
View Article and Find Full Text PDFIntroduction: Mesenchymal stromal/stem cells (MSCs) for clinical use have largely been isolated from the bone marrow, although isolation of these cells from many different adult and fetal tissues has been reported as well. One such source of MSCs is the Whartons Jelly (WJ) of the umbilical cord, as it provides an inexhaustible source of stem cells for potential therapeutic use. Isolation of MSCs from the umbilical cord also presents little, if any, ethical concerns, and the process of obtaining the cord tissue is relatively simple with appropriate consent from the donor.
View Article and Find Full Text PDFMesenchymal stromal cells (MSCs) derived from different tissue sources are capable of differentiating into neural and glial cell types. However, the efficiency of differentiation varies between MSCs derived from different tissues. We compared the efficiency of neural progenitor population generation between adipose (AD), bone marrow (BM) and Wharton's jelly (WJ) derived MSCs.
View Article and Find Full Text PDFBackground Aims: Because of their multilineage differentiation capacity, immunomodulatory role and homing ability, mesenchymal stromal cells (MSC) are emerging as a new therapeutic strategy for treating a variety of disorders. Although bone marrow (BM) is the best characterized source of MSC, Wharton's jelly (WJ) of the umbilical cord holds great promise as an alternative. As delivery direct to the site of injury is not always feasible, efficient homing of MSC to the site of injury is critical for inducing tissue repair and regeneration.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have become an attractive tool for tissue engineering and targets in clinical transplantation due to their regeneration potential and immuno-suppressive capacity. Although MSCs derived from bone marrow are the most widely used, their harvest requires an invasive procedure. The umbilical cord, which is discarded at birth, can provide an inexhaustible source of stem cells for therapy.
View Article and Find Full Text PDFMSCs are promising candidates for stem cell therapy and regenerative medicine. Umbilical cord is the easiest obtainable biological source of MSCs and the Wharton's jelly of the umbilical cord is a rich source of fetus-derived stem cells. However, the use of MSCs for therapeutic application is based on their subsequent large-scale in vitro expansion.
View Article and Find Full Text PDFMultipotent mesenchymal stromal cells (MSCs) from Wharton's jelly (WJ) of umbilical cord bear higher proliferation rate and self-renewal capacity than adult tissue-derived MSCs and are a primitive stromal cell population. Stem cell niche or physiological microenvironment plays a crucial role in maintenance of stem cell properties and oxygen concentration is an important component of the stem cell niche. Low oxygen tension or hypoxia is prevalent in the microenvironment of embryonic stem cells and many adult stem cells at early stages of development.
View Article and Find Full Text PDF