ACS Chem Biol
April 2022
RNA detection is important in diverse diagnostic and analytical applications. RNAs can be rapidly detected using molecular beacons, which fluoresce upon hybridizing to a target RNA but require oligonucleotides with complex fluorescent dye and quencher conjugations. Here, we describe a simplified method for rapid fluorescence detection of a target RNA using simple unmodified DNA oligonucleotides.
View Article and Find Full Text PDFNat Chem Biol
February 2022
Squash is an RNA aptamer that strongly activates the fluorescence of small-molecule analogs of the fluorophore of green fluorescent protein (GFP). Unlike other fluorogenic aptamers, isolated de novo from random-sequence RNA, Squash was evolved from the bacterial adenine riboswitch to leverage its optimized in vivo folding and stability. We now report the 2.
View Article and Find Full Text PDFFluorogenic RNA aptamers are used to genetically encode fluorescent RNA and to construct RNA-based metabolite sensors. Unlike naturally occurring aptamers that efficiently fold and undergo metabolite-induced conformational changes, fluorogenic aptamers can exhibit poor folding, which limits their cellular fluorescence. To overcome this, we evolved a naturally occurring well-folded adenine riboswitch into a fluorogenic aptamer.
View Article and Find Full Text PDFTo understand the role of intracellular metabolites in cellular processes, it is important to measure the dynamics and fluxes of small molecules in living cells. Although conventional metabolite sensors composed of fluorescent proteins have been made to detect some metabolites, an emerging approach is to use genetically encoded sensors composed of RNA. Because of the ability to rapidly generate metabolite-binding RNA aptamers, RNA-based sensors have the potential to be designed more readily than protein-based sensors.
View Article and Find Full Text PDFThrombin is the typical target in anticlotting therapy for many serious diseases such as heart attack and stroke. DNA aptamers are well-known thrombin inhibitors that prevent fibrinogen hydrolysis. We have discovered that exosite-targeting antithrombin aptamers enhance the activity of thrombin toward a small peptide substrate, Sar(N-methylglycine)-Pro-Arg-paranitroanilide, and that the activation of the enzyme by these aptamers is strongly inhibited by their complementary DNAs.
View Article and Find Full Text PDF