Publications by authors named "Soo-Min Lee"

Visible light-activated chemoresistive gas sensors offer low power consumption, room-temperature operation, minimal material degradation, and human safety. While extensive research has focused on NO detection due to its high electron affinity, detecting volatile organic compounds or amine gases by light activation remains challenging because of the high activation energy required for interactions with sensing materials. Here, we report the first demonstration of green-light-activated trimethylamine (TMA) detection using β-InS nanoflakes (NFs) corresponding to the bandgap energy of green wavelength.

View Article and Find Full Text PDF

Introduction: Patients with end-stage renal disease are at increased risk for developing mitral valve calcification and dysfunction. The present study evaluated clinical and financial outcomes of transcatheter compared with surgical mitral valve replacement/repair in patients with end-stage renal disease using a national cohort.

Methods: This was a retrospective analysis of all adult patients with end-stage renal disease receiving isolated surgical mitral valve replacement/repair or transcatheter mitral valve replacement/repair in the Nationwide Readmissions Database (2016-2021).

View Article and Find Full Text PDF

: Perillyl alcohol (POH), a monoterpene natural product derived from the essential oils of plants such as perilla (), is currently in phase I and II clinical trials as a chemotherapeutic agent. In this study, we investigated the effect of POH on cytochrome P450 (CYP) activity for evaluating POH-drug interaction potential. : The investigation was conducted using pooled human liver microsomes (HLMs), recombinant CYP3A4 (rCYP3A4) enzymes, and human pluripotent stem cell-derived hepatic organoids (hHOs) employing liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

Acidovorax citrulli is a causative pathogen for bacterial fruit blotch (BFB) in Cucurbitaceae, including watermelon. The most effective method to control this plant disease is to cultivate resistant cultivars. Herein, this study aimed to establish an efficient screening method to determine the resistance of watermelon cultivars against A.

View Article and Find Full Text PDF

Demand for real-time detection of hydrogen and ammonia, clean energy carriers, in a sensitive and selective manner, is growing rapidly for energy, industrial, and medical applications. Nevertheless, their selective detection still remains a challenge and requires the utilization of diverse sensors, hampering the miniaturization of sensor modules. Herein, a practical approach via material design and facile temperature modulation for dual selectivity is proposed.

View Article and Find Full Text PDF

Ultrasensitive, rapid, and reliable biomolecular sensing is essential for biomedical diagnostics, requiring real-time monitoring and detection of trace samples. Optical sensing, particularly plasmonic biosensing, meets these demands through noninvasive, high-sensitivity detection based on the interaction between light and molecules. Here, we present novel plasmonic metamaterial-based sensing strategy, utilizing the circular dichroism (CD) response of grating-coupled surface plasmon resonance (SPR) from chiral nanoparticle grating structure (i.

View Article and Find Full Text PDF
Article Synopsis
  • * Palladium alloyed with gold (PdAu) is proposed as a sensor that improves stability and reliability, with a room temperature detection range of 0.0002% to 5% hydrogen and a quick response time of 9.5 seconds.
  • * The study also found that specific hydrogen penetration causes lattice compression in PdAu, leading to decreased electrical resistance, suggesting potential for enhanced hydrogen sensor performance through Pd-based alloys.
View Article and Find Full Text PDF

This study aimed to identify hub genes involved in regulatory T cell (Treg) function and migration, offering insights into potential therapeutic targets for cancer immunotherapy. We performed a comprehensive bioinformatics analysis using three gene expression microarray datasets from the GEO database. Differentially expressed genes (DEGs) were identified to pathway enrichment analysis to explore their functional roles and potential pathways.

View Article and Find Full Text PDF

Micro-light-emitting diodes (μLEDs) have gained significant interest as an activation source for gas sensors owing to their advantages, including room temperature operation and low power consumption. However, despite these benefits, challenges still exist such as a limited range of detectable gases and slow response. In this study, we present a blue μLED-integrated light-activated gas sensor array based on SnO nanoparticles (NPs) that exhibit excellent sensitivity, tunable selectivity, and rapid detection with micro-watt level power consumption.

View Article and Find Full Text PDF

Nucleic acid amplification testing has great potential for point-of-need diagnostic testing with high detection sensitivity and specificity. Current sample preparation is limited by a tedious workflow requiring multiple steps, reagents and instrumentation, hampering nucleic acid testing at point of need. In this study, we present the use of mixed cellulose ester (MCE) paper for DNA binding by ionic interaction under molecular crowding conditions and fluid transport by wicking.

View Article and Find Full Text PDF

The human gastrointestinal (GI) tract houses a diverse microbial community, known as the gut microbiome comprising bacteria, viruses, fungi, and protozoa. The gut microbiome plays a crucial role in maintaining the body's equilibrium and has recently been discovered to influence the functioning of the central nervous system (CNS). The communication between the nervous system and the GI tract occurs through a two-way network called the gut-brain axis.

View Article and Find Full Text PDF

Background: Recent intravesical administration of adenoviral vectors, either as a single injection or in combination with immune checkpoint inhibitors, exemplified by cretostimogene grenadenorepvec and nadofaragene firadenovec, has demonstrated remarkable efficacy in clinical trials for non-muscle invasive bladder cancer. Despite their ability to induce an enhanced immune reaction within the lesion, the intracellular survival signaling of cancer cells has not been thoroughly addressed.

Methods: An analysis of the prognostic data revealed a high probability of therapeutic efficacy with simultaneous inhibition of mTOR and STAT3.

View Article and Find Full Text PDF

Bacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is one of the most severe diseases in radish cultivation. To control this plant disease, the most effective method has been known to cultivate resistant cultivars.

View Article and Find Full Text PDF

Evading recognition of immune cells is a well-known strategy of tumors used for their survival. One of the immune evasion mechanisms is the synthesis of kynurenine (KYN), a metabolite of tryptophan, which suppresses the effector T cells. Therefore, lowering the KYN concentration can be an efficient antitumor therapy by restoring the activity of immune cells.

View Article and Find Full Text PDF

Molecular chirality is represented as broken mirror symmetry in the structural orientation of constituent atoms and plays a pivotal role at every scale of nature. Since the discovery of the chiroptic property of chiral molecules, the characterization of molecular chirality is important in the fields of biology, physics, and chemistry. Over the centuries, the field of optical chiral sensing was based on chiral light-matter interactions between chiral molecules and polarized light.

View Article and Find Full Text PDF

Background: Interactions of plants with biotic stress factors including bacteria, fungi, and viruses have been extensively investigated to date. Plasmodiophora brassicae, a protist pathogen, causes clubroot disease in Cruciferae plants. Infection of Chinese cabbage (Brassica rapa) plants with P.

View Article and Find Full Text PDF

Biological models with genetic similarities to humans are used for exploratory research to develop behavioral screening tools and understand sensory-motor interactions. Their small, often mm-sized appearance raises challenges in the straightforward quantification of their subtle behavioral responses and calls for new, customisable research tools. 3D printing provides an attractive approach for the manufacture of custom designs at low cost; however, challenges remain in the integration of functional materials like porous membranes.

View Article and Find Full Text PDF
Article Synopsis
  • p53 is a crucial tumor suppressor that helps prevent cancer, but drug resistance poses a significant challenge when trying to enhance its function.
  • A new deep learning model, AnoDAN, was developed to identify hidden mechanisms of drug resistance and pinpoint effective combination targets.
  • The study found that the TGF-β and p53 signaling pathways interact, with THBS1 being a key player, and revealed a feedback loop that drives resistance in lung cancer cells, providing valuable insights for future treatments.
View Article and Find Full Text PDF

Target identification is a crucial process in drug development, aiming to identify key proteins, genes, and signal pathways involved in disease progression and their relevance in potential therapeutic interventions. While C-C chemokine receptor 8 (CCR8) has been investigated as a candidate anti-cancer target, comprehensive multi-omics analyzes across various indications are limited. In this study, we conducted an extensive bioinformatics analysis integrating genomics, proteomics, and transcriptomics data to establish CCR8 as a promising anti-cancer drug target.

View Article and Find Full Text PDF

Nucleic acid amplification testing facilitates the detection of disease through specific genomic sequences and is attractive for point-of-need testing (PONT); in particular, the early detection of microorganisms can alert early response systems to protect the public and ecosystems from widespread outbreaks of biological threats, including infectious diseases. Prior to nucleic acid amplification and detection, extensive sample preparation techniques are required to free nucleic acids and extract them from the sample matrix. Sample preparation is critical to maximize the sensitivity and reliability of testing.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) presents significant challenges due to its aggressive nature and limited treatment options. Focal adhesion kinase (FAK) has emerged as a critical factor promoting tumor growth and metastasis in TNBC. Despite encouraging results from preclinical and early clinical trials with various FAK inhibitors, none have yet achieved clinical success in TNBC treatment.

View Article and Find Full Text PDF

Complexity of sample preparation decelerate the development of sample-in-answer-out devices for point-of-need nucleic acid amplification testing. Here, we present the consolidation of alkaline poly(ethylene) glycol-based lysis and solid-phase extraction for rapid and simple sample preparation compatible with direct on-bead amplification. Simultaneous cell lysis and binding of DNA were achieved using an optimised reagent comprising 15% PEG8000, 0.

View Article and Find Full Text PDF

Mixing, homogenization, separation, and filtration are crucial processes in miniaturized analytical systems employed for in-vitro biological, environmental, and food analysis. However, in microfluidic systems achieving homogenization becomes more challenging due to the laminar flow conditions, which lack the turbulent flows typically used for mixing in traditional analytical systems. Here, we introduce an acoustofluidic platform that leverages an acoustic transducer to generate microvortex streaming, enabling effective homogenizing of food samples.

View Article and Find Full Text PDF
Article Synopsis
  • The text indicates a correction to a previously published article, specifically identified by its DOI: 10.3389/fpls.2022.997888.
  • The correction may involve updates or clarifications that improve the accuracy of the original research findings.
  • DOI stands for Digital Object Identifier, which is a unique identifier used for academic papers to locate and reference them easily.
View Article and Find Full Text PDF