GM Crops Food
December 2025
Several genetically modified (GM) potatoes have been developed by introducing endogenous genes derived from potatoes, such as () and (), to improve quality. Therefore, it is difficult to distinguish between GM and non-GM potatoes. In this study, we developed a sequence-specific polymerase chain reaction (PCR) detection method to identify innate and inserted genes.
View Article and Find Full Text PDFInterspecific hybridization between two different Brassicaceae species, namely ssp. (♀) (AA, 2n = 2x = 20) and genetically modified (♂) (AACC, 2n = 4x = 38), was performed to study the transmission of a herbicide resistance gene from a tetraploid to a diploid species. Initially, four different GM lines were used for hybridization with via hand pollination.
View Article and Find Full Text PDFFront Plant Sci
September 2024
Parental epigenetic asymmetries, which contribute to the monoallelic expression of genes known as imprints, play a critical role in seed development in flowering plants. Primarily, differential DNA methylation patterns and histone modifications on parental alleles form the molecular basis of gene imprinting. Plants predominantly exhibit this non-Mendelian inheritance phenomenon in the endosperm and the early embryo of developing seeds.
View Article and Find Full Text PDFBrown mustard ( (L.) is an important oilseed crop that is mostly used to produce edible oils, industrial oils, modified lipids and biofuels in subtropical nations. Due to its higher level of commercial use, the species has a huge array of varieties/cultivars.
View Article and Find Full Text PDFInterspecific hybridization between transgenic crops and their wild relatives is a major concern for transgene dispersal in the environment. Under controlled conditions, artificial hand pollination experiments were performed in order to assess the hybridization potential and the fitness of interspecific hybrids between and genetically modified (GM) . Initially, six subspecies of were hybridized with GM through hand pollination.
View Article and Find Full Text PDFSecondary metabolites are incontestably key specialized molecules with proven health-promoting effects on human beings. Naturally synthesized secondary metabolites are considered an important source of pharmaceuticals, food additives, cosmetics, flavors, etc., Therefore, enhancing the biosynthesis of these relevant metabolites by maintaining natural authenticity is getting more attention.
View Article and Find Full Text PDFIn nature, interspecific hybridization occurs frequently and can contribute to the production of new species or the introgression of beneficial adaptive features between species. It has great potential in agricultural systems to boost the process of targeted crop improvement. In the advent of genetically modified (GM) crops, it has a disadvantage that it involves the transgene escaping to unintended plants, which could result in non-specific weedy crops.
View Article and Find Full Text PDFIn recent years, the rapid development of genetically modified (GM) technology has raised concerns about the safety of GM crops and foods for human health and the ecological environment. Gene flow from GM crops to other crops, especially in the Brassicaceae family, might pose a threat to the environment due to their weediness. Hence, finding reliable, quick, and low-cost methods to detect and monitor the presence of GM crops and crop products is important.
View Article and Find Full Text PDFCurcumin, a yellow-colored molecule derived from the rhizome of , has been identified as the bioactive compound responsible for numerous pharmacological activities of turmeric, including anticancer, antimicrobial, anti-inflammatory, antioxidant, antidiabetic, etc. Nevertheless, the clinical application of curcumin is inadequate due to its low solubility, poor absorption, rapid metabolism and elimination. Advancements in recent research have shown several components and techniques to increase the bioavailability of curcumin.
View Article and Find Full Text PDFBiology (Basel)
December 2021
Globally, the cultivation area of genetically modified (GM) crops is increasing dramatically. Despite their well-known benefits, they may also pose many risks to agriculture and the environment. Among the various GM crops, GM rapeseed ( L.
View Article and Find Full Text PDFSeaweed extracts are considered effective therapeutic alternatives to synthetic anticancer, antioxidant, and antimicrobial agents, owing to their availability, low cost, greater efficacy, eco-friendliness, and non-toxic nature. Since the bioactive constituents of seaweed, in particular, phytosterols, possess plenty of medicinal benefits over other conventional pharmaceutical agents, they have been extensively evaluated for many years. Fortunately, recent advances in phytosterol-based research have begun to unravel the evidence concerning these important processes and to endow the field with the understanding and identification of the potential contributions of seaweed-steroidal molecules that can be used as chemotherapeutic drugs.
View Article and Find Full Text PDFPre-harvest sprouting is a critical phenomenon involving the germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. As it results in reduced grain yield and quality, it is a common problem for the farmers who have cultivated the rice and wheat across the globe. Crop yields need to be steadily increased to improve the people's ability to adapt to risks as the world's population grows and natural disasters become more frequent.
View Article and Find Full Text PDFRapeseed is an economically important oilseed crop throughout the world. We examined the content and composition of glucosinolates (GSLs) and phenolics in the sprouts of seven Korean cultivars. A total of eight GSLs that include four aliphatic GSLs (AGSLs) (progoitrin, gluconapin, gluconapoleiferin, and glucobrassicanapin) and four indole GSLs (IGSLs) (4-methoxyglucobrassicin, 4-hydroxyglucobrassicin, neoglucobrassicin, and glucobrassicin) were identified in these cultivars.
View Article and Find Full Text PDFNear-infrared spectroscopy (NIRS) has become a more popular approach for quantitative and qualitative analysis of feeds, foods and medicine in conjunction with an arsenal of chemometric tools. This was the foundation for the increased importance of NIRS in other fields, like genetics and transgenic monitoring. A considerable number of studies have utilized NIRS for the effective identification and discrimination of plants and foods, especially for the identification of genetically modified crops.
View Article and Find Full Text PDFIsoflavones are ecophysiologically active secondary metabolites derived from the phenylpropanoid pathway. They were mostly found in leguminous plants, especially in the pea family. Isoflavones play a key role in plant-environment interactions and act as phytoalexins also having an array of health benefits to the humans.
View Article and Find Full Text PDFAccumulated microarray data are used for assessing gene function by providing statistical values for co-expressed genes; however, only a limited number of Web tools are available for analyzing the co-expression of genes of . We have developed a Web tool called RapaNet (http://bioinfo.mju.
View Article and Find Full Text PDFA number of studies have been conducted on hybridization between transgenic Brassica napus and B. rapa or backcross of F1 hybrid to their parents. However, trait changes must be analyzed to evaluate hybrid sustainability in nature.
View Article and Find Full Text PDFJ Microbiol Biotechnol
July 2016
Although many studies on the effects of genetically modified (GM) crops on soil microorganisms have been carried out over the past decades, they have provided contradictory information, even for the same GM crop, owing to the diversity of the soil environments in which they were conducted. This inconsistency in results suggests that the effects of GM crops on soil microorganisms should be considered from many aspects. In this study, we investigated the effects of the GM drought-tolerant rice MSRB2-Bar-8, which expresses the CaMSRB2 gene, on soil microorganisms based on the culture-dependent and culture-independent methods.
View Article and Find Full Text PDFTo produce genistein in rice, the isoflavone synthase (IFS) genes, SpdIFS1 and SpdIFS2 were cloned from the Korean soybean cultivar, Sinpaldalkong II as it has a higher genistein content than other soybean varieties. SpdIFS1 and SpdIFS2 show a 99.6% and 98.
View Article and Find Full Text PDFFatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs.
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2012
Paenibacillus polymyxa is known to be a plant-growthpromoting rhizobacterium. The present study describes a quantitative polymerase chain reaction (qPCR) assay for the specific detection and quantitation of P. polymyxa using a primer pair based on the sequence of a membranefusion protein for the amplification of a 268 bp DNA fragment.
View Article and Find Full Text PDFHrpN(EP), from the gram-negative pathogen, Erwinia pyrifoliae, is a member of the harpin group of proteins, inducing pathogen resistance and hypersensitive cell death in plants. When the hrpN(EP) gene driven by the OsCc1 promoter was introduced into tobacco plants via Agrobacterium-mediated transformation, their resistance to the necrotrophic fungal pathogen, Botrytis cinerea, increased. Resistance to B.
View Article and Find Full Text PDFWe investigated hepatoprotective activity and antioxidant effect of the 2,5-dihydroxy-4,3'-di(beta-D-glucopyranosyloxy)-trans-stilbene that purified from Morus bombycis Koidzumi roots against CCl4-induced liver damage in rats. The 2,5-dihydroxy-4,3'-di(beta-D-glucopyranosyloxy)-trans-stilbene displayed dose-dependent superoxide radical scavenging activity (IC50 = 430.2 microg/ml), as assayed by the electron spin resonance (ESR) spin-trapping technique.
View Article and Find Full Text PDF