Publications by authors named "Simran Samra"

Inborn errors of immunity (IEIs) are caused by deleterious variants in immune-related genes. ASXL1 is an epigenetic modifier not previously linked to an IEI. Clonal hematopoiesis and hematologic neoplasms often feature somatic ASXL1 variants, and Bohring-Opitz syndrome, a neurodevelopmental disorder, is caused by heterozygous truncating ASXL1 variants.

View Article and Find Full Text PDF

This case report presents a new genetic variant that causes STAT6 gain-of-function disease in 2 patients, expands the clinical phenotype of STAT6 gain-of-function disease, and describes its authors' success in using therapeutics to manage this rare disease.

View Article and Find Full Text PDF

ThPOK is a transcription factor that acts as a master regulator of CD4+ T cell lineage commitment. We report the first human disease caused by a genetic alteration in ThPOK, specifically, a damaging heterozygous de novo variant in ThPOK (NM_001256455.2:c.

View Article and Find Full Text PDF

Allergic diseases, including asthma, allergic rhinitis, atopic dermatitis, and food allergies, are driven by dysregulated immune responses, often involving IgE-mediated mast cell and basophil activation, Th2 inflammation, and epithelial dysfunction. While environmental factors are well-known contributors, the genetic components underpinning these conditions are increasingly understood. Traditionally viewed as polygenic multifactorial disorders, allergic diseases can also be caused by single-gene defects affecting the immune system and skin epithelial barrier, leading to profoundly dysregulated allergic responses.

View Article and Find Full Text PDF
Article Synopsis
  • The JAK-STAT signaling cascade is a crucial pathway in cells that affects immune function and blood cell development, and it’s conserved across evolution.
  • Mutations in the JAK-STAT pathway are linked to an increasing number of diseases, including inherited immune disorders and conditions that mimic them due to acquired genetic changes.
  • This review covers the clinical symptoms and causes of JAK-STAT-related diseases, along with important guidelines for diagnosis and treatment.
View Article and Find Full Text PDF

Pathogenic PHF21A variation causes PHF21A-related neurodevelopmental disorders (NDDs). Although amorphic alleles, including haploinsufficiency, have been established as a disease mechanism, increasing evidence suggests that missense variants as well as frameshift variants extending the BHC80 carboxyl terminus also cause disease. Expanding on these, we report a proposita with intellectual disability and overgrowth and a novel de novo heterozygous PHF21A splice variant (NM_001352027.

View Article and Find Full Text PDF

Microtubule affinity-regulating kinase 4 (MARK4) is a serine/threonine kinase that plays a key role in tau phosphorylation and regulation of the mammalian target of rapamycin (mTOR) pathway. Abnormal tau phosphorylation and dysregulation of the mTOR pathway are implicated in neurodegenerative and neurodevelopmental disorders. Here, we report a gain-of-function variant in in two siblings with childhood-onset neurodevelopmental disability and dysmorphic features.

View Article and Find Full Text PDF

Transcription factors (TFs) are critical components involved in regulating immune system development, maintenance, and function. Monogenic defects in certain TFs can therefore give rise to inborn errors of immunity (IEIs) with profound clinical implications ranging from infections, malignancy, and in some cases severe allergic inflammation. This review examines TF defects underlying IEIs with severe atopy as a defining clinical phenotype, including STAT3 loss-of-function, STAT6 gain-of-function, FOXP3 deficiency, and T-bet deficiency.

View Article and Find Full Text PDF

Tandem splice acceptors (NAGN AG) are a common mechanism of alternative splicing, but variants that are likely to generate or to disrupt tandem splice sites have rarely been reported as disease causing. We identify a pathogenic intron 23 CLTC variant (NM_004859.4:c.

View Article and Find Full Text PDF