Publications by authors named "Simone Di Sanzo"

Mutant isocitrate dehydrogenase (mIDH) inhibition significantly improves progression-free survival in patients with mIDH WHO grade 2 glioma; however, a large proportion of patients will progress, and mechanisms of adaptation to mIDH inhibition remain poorly understood. Perioperative studies with evaluation of paired pre- and post-treatment samples enable detailed understanding of drug response, facilitating biomarker development, but are rare in glioma owing to safety and cost concerns. Here we conducted a single-arm, open-label feasibility perioperative trial in patients with mIDH1 low-grade glioma, treatment naive to radiation and chemotherapy, with safusidenib (AB-218/DS-1001b), an orally available small-molecule inhibitor of mIDH1.

View Article and Find Full Text PDF

The poly(ADP-ribose) polymerase inhibitor (PARPi) class of drugs represents a remarkable advance in the treatment of patients with homologous recombination-deficient tumours, but resistance remains a challenge. Although most research has focused on the downstream consequences of PARPi exposure to tackle resistance, the immediate effect of PARP inhibition on the chromatin environment and its contribution to PARPi toxicity remains elusive. Here we show that PARP inhibition induces histone release from the chromatin.

View Article and Find Full Text PDF

DNA replication causes the dilution of parental histones along with their specific post-translational modifications. The kinetics of restoring these marks on newly incorporated histones dictate how quickly genomic domains regain their epigenetic identity after replication. H3K9me3 is restored extremely slowly; the process of reconstitution, to achieve the pre-replication levels, continues throughout the following G1 phase.

View Article and Find Full Text PDF

Development and lineage choice are driven by interconnected transcriptional, epigenetic and metabolic changes. Specific metabolites, such as α-ketoglutarate (αKG), function as signalling molecules affecting the activity of chromatin-modifying enzymes. However, how metabolism coordinates cell-state changes, especially in human pre-implantation development, remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Long-term issues in chromatin assembly during DNA replication can significantly impact how cells maintain their epigenetic information and decide their fate.
  • Researchers studied the effects of quickly removing a key protein called CAF-1, which is crucial for building chromatin, by using advanced techniques like single-cell genomics and live microscopy.
  • The loss of CAF-1 slows DNA replication, makes new DNA more accessible, triggers a unique cellular response that reduces histone mRNA levels, and ultimately leads to cell-cycle arrest influenced by p53, highlighting the immediate consequences of faulty chromatin assembly.
View Article and Find Full Text PDF

Background: With its high and increasing lifetime prevalence, back pain represents a contemporary challenge for patients and healthcare providers. Monitored exercise therapy is a commonly prescribed treatment to relieve pain and functional limitations. However, the benefits of exercise are often gradual, subtle, and evaluated by subjective self-reported scores.

View Article and Find Full Text PDF

Long-term perturbation of chromatin assembly during DNA replication has profound effects on epigenome maintenance and cell fate. The early mechanistic origin of these defects is unknown. Here, we combine acute degradation of Chromatin Assembly Factor 1 (CAF-1), a key player in chromatin assembly, with single-cell genomics, quantitative proteomics, and live-microscopy to uncover these initiating mechanisms in human cells.

View Article and Find Full Text PDF

Glycation significantly alters the physicochemical and biofunctional properties of proteins in foods and in vivo. In the present study, human serum albumin (HSA) as the major transporter of fatty acids was modified with glyoxal under physiological conditions. Reversibly albumin-bound glyoxal was removed, and advanced glycation end products were quantitated by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Posttranslational mechanisms play a key role in modifying the abundance and function of cellular proteins. Among these, modification by advanced glycation end products has been shown to accumulate during aging and age-associated diseases but specific protein targets and functional consequences remain largely unexplored. Here, we devise a proteomic strategy to identify sites of carboxymethyllysine modification, one of the most abundant advanced glycation end products.

View Article and Find Full Text PDF

During aging, the regenerative capacity of skeletal muscle decreases due to intrinsic changes in muscle stem cells (MuSCs) and alterations in their niche. Here, we use quantitative mass spectrometry to characterize intrinsic changes in the MuSC proteome and remodeling of the MuSC niche during aging. We generate a network connecting age-affected ligands located in the niche and cell surface receptors on MuSCs.

View Article and Find Full Text PDF

A progressive loss of protein homeostasis is characteristic of aging and a driver of neurodegeneration. To investigate this process quantitatively, we characterized proteome dynamics during brain aging in the short-lived vertebrate Nothobranchius furzeri combining transcriptomics and proteomics. We detected a progressive reduction in the correlation between protein and mRNA, mainly due to post-transcriptional mechanisms that account for over 40% of the age-regulated proteins.

View Article and Find Full Text PDF

Aging represents the accumulation of changes in an individual over time, encompassing physical, psychological, and social changes. Posttranslational modifications of proteins such as glycosylation, including sialylation or glycation, are proposed to be involved in this process, since they modulate a variety of molecular and cellular functions. In this study, we analyzed selected posttranslational modifications and the respective proteins on which they occur in young and old mouse brains.

View Article and Find Full Text PDF

Recently discovered acylation by reactive acyl-CoA species is considered a novel regulatory mechanism in epigenetics and metabolism. Established analytical methods like Western blotting and proteomics fail to detect the plethora of acylation structures in a single analysis and lack the ability of absolute quantitation. In this paper, we developed an HPLC-MS/MS method for the simultaneous detection and quantitation of 14 acylated lysine species in biological samples.

View Article and Find Full Text PDF

Organism aging is characterized by increased inflammation and decreased stem cell function, yet the relationship between these factors remains incompletely understood. This study shows that aged hematopoietic stem and progenitor cells (HSPCs) exhibit increased ground-stage NF-κB activity, which enhances their responsiveness to undergo differentiation and loss of self-renewal in response to inflammation. The study identifies /cohesin as a critical mediator of NF-κB signaling, which increases chromatin accessibility in the vicinity of NF-κB target genes in response to inflammation.

View Article and Find Full Text PDF