Publications by authors named "Shuiyu Li"

The neocortex is organized along a dominant sensorimotor-to-association (S-A) axis, anchored by modality-specific primary sensorimotor areas at one end and transmodal association areas that form distributed networks supporting abstract cognition at the other. The developmental mechanisms shaping this axis remain elusive. Here, we present converging multispecies evidence supporting the Multinodal Induction-Exclusion in Network Development (MIND) model, in which S-A patterning is governed by competing processes of induction and exclusion, driven by opposing transcriptomically-defined identity programs emerging from different nodes.

View Article and Find Full Text PDF

Albino people are known to have vision deficit. Albino animals are shown to have abnormal connectivity and malformation of the visual system. However, not many studies have revealed visual impairment of albino animals in the level of perception.

View Article and Find Full Text PDF

Because at least some squirrel monkeys lack ocular dominance columns (ODCs) in the striate cortex (V1) that are detectable by cytochrome oxidase (CO) histochemistry, the functional importance of ODCs on stereoscopic 3-D vision has been questioned. However, conventional CO histochemistry or trans-synaptic tracer study has limited capacity to reveal cortical functional architecture, whereas the expression of immediate-early genes (IEGs), and , is more directly responsive to neuronal activity of cortical neurons to demonstrate ocular dominance (OD)-related domains in V1 following monocular inactivation. Thus, we wondered whether IEG expression would reveal ODCs in the squirrel monkey V1.

View Article and Find Full Text PDF

Cytochrome oxidase (CO) histochemistry has been used to reveal the cytoarchitecture of the primate brain, including blobs/puffs/patches in the striate cortex (V1), and thick, thin and pale stripes in the middle layer of the secondary visual cortex (V2). It has been suggested that CO activity is coupled with the spiking activity of neurons, implying that neurons in these CO-rich subcompartments are more active than surrounding regions. However, we have discussed possibility that CO histochemistry represents the distribution of thalamo-cortical afferent terminals that generally use vesicular glutamate transporter 2 (VGLUT2) as their main glutamate transporter, and not the activity of cortical neurons.

View Article and Find Full Text PDF