Publications by authors named "Shengxin Jia"

Acne is a common skin condition caused by the blockage of hair follicles, which is often associated with adolescents. Beyond physical discomfort and potential scarring, acne can also result in mental health issues including low self-esteem and anxiety. Among all available medical treatments, topical antibiotics are effective for acne treatment due to their rapid action, anti-inflammatory properties, minimal side effects, and accessibility.

View Article and Find Full Text PDF

Human-machine interface (HMI) plays an important role in various fields, where haptic technologies provide crucial tactile feedback that greatly enhances user experience, especially in virtual reality/augmented reality, prosthetic control, and therapeutic applications. Through tactile feedback, users can interact with devices in a more realistic way, thereby improving the overall effectiveness of the experience. However, existing haptic devices are often bulky due to cumbersome instruments and power modules, limiting comfort and portability.

View Article and Find Full Text PDF

Gustation is one of the five innate sensations for humans, distinguishing from vision, auditory, tactile, and olfaction, as which is a close and chemically induced sense. Despite the fact that a handful of gustation display technologies have been developed, the new technologies still pose significant challenges in miniaturization of the overall size for portability, enriching taste options within a limited working area, supporting natural human-device interaction, and achieving precisely controlled taste feedback. To address these issues, here, we report a set of intelligent and portable lollipop-shaped taste interfacing systems covering from 2 to 9 different taste options for establishing an adjustable taste platform in virtual reality (VR), augmented reality (AR), and mixed reality (MR) environments.

View Article and Find Full Text PDF

The capacity to discern and locate positions in three-dimensional space is crucial for human-machine interfaces and robotic perception. However, current soft electronics can only obtain two-dimensional spatial locations through physical contact. In this study, we report a non-contact position targeting concept enabled by transparent and thin soft electronic skin (E-skin) with three-dimensional sensing capabilities.

View Article and Find Full Text PDF
Article Synopsis
  • Wearable haptics enhance the connection between humans and virtual reality or robots, but sweat accumulation affects their performance and comfort.
  • Traditional wearable haptic devices often sacrifice breathability and hygiene for better performance, creating challenges for users.
  • The newly developed Fully Integrated Breathable Haptic Textile (FIBHT) overcomes these issues by offering high-level integration, stretchability, and permeability, providing effective and comfortable feedback for a variety of applications.
View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the need for a method to constantly monitor the integrity of spinal hardware, as current methods fail to detect issues until symptoms appear, which could lead to serious complications.* -
  • It introduces a new technology called BioMDA (bio-adhesive metal detector array), designed to provide real-time, non-invasive tracking of spinal implants without using radiation.* -
  • The BioMDA features advanced electromagnetic coupling for precise positioning of implants, achieving accuracy levels under 0.5 mm, potentially revolutionizing postoperative monitoring of spinal instrumentation.*
View Article and Find Full Text PDF

Olfaction feedback systems could be utilized to stimulate human emotion, increase alertness, provide clinical therapy, and establish immersive virtual environments. Currently, the reported olfaction feedback technologies still face a host of formidable challenges, including human perceivable delay in odor manipulation, unwieldy dimensions, and limited number of odor supplies. Herein, we report a general strategy to solve these problems, which associates with a wearable, high-performance olfactory interface based on miniaturized odor generators (OGs) with advanced artificial intelligence (AI) algorithms.

View Article and Find Full Text PDF

Wearable electronics with great breathability enable a comfortable wearing experience and facilitate continuous biosignal monitoring over extended periods. However, current research on permeable electronics is predominantly at the stage of electrode and substrate development, which is far behind practical applications with comprehensive integration with diverse electronic components (for example, circuitry, electronics, encapsulation). Achieving permeability and multifunctionality in a singular, integrated wearable electronic system remains a formidable challenge.

View Article and Find Full Text PDF

The rapid diagnosis of respiratory virus infection through breath and blow remains challenging. Here we develop a wireless, battery-free, multifunctional pathogenic infection diagnosis system (PIDS) for diagnosing SARS-CoV-2 infection and symptom severity by blow and breath within 110 s and 350 s, respectively. The accuracies reach to 100% and 92% for evaluating the infection and symptom severity of 42 participants, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Deaf-blindness significantly hampers daily activities and communication due to limited audio and visual perception, making traditional communication methods complicated and inefficient.
  • Researchers propose a novel communication technique that utilizes olfactory senses to enhance communication for deaf-blind individuals, leveraging the brain's processing of smells linked to emotions and memories.
  • A new wireless olfactory interface system has been developed, featuring miniaturized odor generators that can be worn on the skin, leading to faster and more efficient message delivery with improved recognition rates compared to touch-based methods.
View Article and Find Full Text PDF

Continuous monitoring of arterial blood pressure (BP) outside of a clinical setting is crucial for preventing and diagnosing hypertension related diseases. However, current continuous BP monitoring instruments suffer from either bulky systems or poor user-device interfacial performance, hampering their applications in continuous BP monitoring. Here, we report a thin, soft, miniaturized system (TSMS) that combines a conformal piezoelectric sensor array, an active pressure adaptation unit, a signal processing module, and an advanced machine learning method, to allow real wearable, continuous wireless monitoring of ambulatory artery BP.

View Article and Find Full Text PDF

Recent advances in virtual reality (VR) technologies accelerate the creation of a flawless 3D virtual world to provide frontier social platform for human. Equally important to traditional visual, auditory and tactile sensations, olfaction exerts both physiological and psychological influences on humans. Here, we report a concept of skin-interfaced olfactory feedback systems with wirelessly, programmable capabilities based on arrays of flexible and miniaturized odor generators (OGs) for olfactory VR applications.

View Article and Find Full Text PDF