Publications by authors named "Shaoying Xing"

Triphenyltin (TPT) is an organotin compound frequently detected in coastal estuaries, yet studies on TPT's effects in regions with significant salinity fluctuations, such as coastal estuaries, are currently limited. To investigate the toxic effects of TPT under different salinity conditions, this study focused on marine medaka (Oryzias melastigma) embryos. Through early morphological observations, RNA-seq analysis, biochemical marker assays, and qPCR detection, we explored the impact of TPT exposure on the early embryonic development of marine medaka under varying salinities.

View Article and Find Full Text PDF

Microplastics (MPs), an emerging group of pollutants, not only have direct toxic effects on aquatic organisms but also cause combined toxicity by absorbing other pollutants. Triphenyltin (TPT), one of the most widely used organotin compounds, has adverse effects on aquatic organisms. However, little is known about the combined toxicity of MPs and TPT to aquatic organisms.

View Article and Find Full Text PDF

Triphenyltin (TPT), a synthetic chemical, is prevalent in complex salinity areas, including estuaries and coastal regions. However, current studies on the toxicological effects of TPT relevant to the environment at different salinities are limited. In the study, biochemical, histological, and transcriptional analyses of TPT and salinity alone, or in combination, was performed on the Nile tilapia (Oreochromis niloticus) liver.

View Article and Find Full Text PDF

This paper evaluates the coexistence risks of triphenyltin (TPT) and norfloxacin (NOR) to aquatic organisms in the aquatic environment. Carp (Cyprinus carpio) was used as the test organism, the control and exposure groups (1 μg/L TPT), 1 mg/L (NOR), 1 μg/LTPT+1 mg/LNOR (TPT_NOR)) were set up according to the environmental concentration in the severely polluted area for 42 days. The single/combined toxic effects of TPT and NOR on aquatic organisms were evaluated by analyzing carp brain transcriptome sequencing, gut microbiota structure, and detection of biochemical indicators and RT-qPCR.

View Article and Find Full Text PDF

The combined effects of emerging pollutants and ocean acidification (OA) on marine organisms and marine ecosystems have attracted increasing attention. However, the combined effects of tralopyril and OA on marine organisms and marine ecosystems remain unclear. In this study, Crassostrea gigas (C.

View Article and Find Full Text PDF

Triphenyltin (TPT) has attracted considerable attention owing to its vitality, bioaccumulation, and lurking damage. TPT widely exists in complex salinity areas such as estuaries and coastal regions. However, there are few studies on the toxicological behavior of TPT under different salinity.

View Article and Find Full Text PDF

Triphenyltin (TPT) is an endocrine contaminant that is often detected in the environment. However, the mechanism of the effects of TPT on biological systems is not fully understood. Here we exposed marine medaka (Oryzias melastigma) to TPT for 21 days.

View Article and Find Full Text PDF

This study aimed to determine the effects of Enrofloxacin (ENR) exposure and depuration on the disruption of thyroid function and growth of juvenile grass carp (Ctenopharyngodon idella) as well as to assess the risk of ENR exposure to human health. Juvenile grass carp were treated with ENR solutions at different concentration gradients for 21 days and then depurated for 14 days. The results indicated ENR accumulation in the juvenile grass carp muscles, which persisted after depuration.

View Article and Find Full Text PDF

In recent years, with the development of the global economy, water pollution has increased. Pollutants migrate, accumulate, and diffuse in aquatic environments. Most of the pollutants eventually enter aquatic organisms.

View Article and Find Full Text PDF

Tralopyril is an emerging marine antifouling agent with limited data on its effects on fish growth and calcium regulation. To determine the changes induced by long-term exposure to tralopyril, multi-levels (such as molecular, biochemical, and individual levels) responses were measured in turbot at different concentrations (1 μg/L, 20 μg/L). The results showed that 1 μg/L mainly affected the immune response, while 20 μg/L affected the synthesis and metabolism of steroids and fat.

View Article and Find Full Text PDF

Tralopyril is an emerging marine antifouling agent with potential toxic effects on non-target aquatic organisms. To evaluate the toxicity of tralopyril, to turbot (Scophthalmus maximus), we assessed biomarkers, including oxidative stress, neurotoxicity, and osmotic homeostasis regulation enzymes, after a 7-day exposure to tralopyril (5 μg/L, 15 μg/L, 30 μg/L). Superoxide dismutase activity was significantly decreased at 30 μg/L, and Ca-Mg-ATPase activity in the gills was significantly increased at 15 μg/L and 30 μg/L.

View Article and Find Full Text PDF
Article Synopsis
  • There is limited research on how quinolone antibiotics, specifically norfloxacin (NOR), affect the endocrine systems of aquatic animals like juvenile common carp.
  • The study evaluated both the hypothalamus-pituitary-thyroid (HPT) axis and the hypothalamus-pituitary-gonadal (HPG) axis over a 42-day exposure to varying concentrations of NOR.
  • Findings indicated that lower concentrations can inhibit sex hormones, while higher concentrations may cause the carp to develop adaptive mechanisms that mitigate hormonal changes, highlighting the need for further research on the specific effects and mechanisms of NOR on aquatic organisms.
View Article and Find Full Text PDF

Recently, the toxic effects of tralopyril, as a new antifouling biocide, on aquatic organisms have aroused widespread attention about the potential toxicity. However, the mechanism of tralopyril on marine mollusks has not been elaborated clearly. In this study, the histological, biochemical and molecular impacts of tralopyril on adult Crassostrea gigas were investigated.

View Article and Find Full Text PDF

Triphenyltin (TPT), an organic compound with a wide range of applications, is often detected in water bodies and aquatic animals. However, the mechanism underlying the biological metabolic health problems caused by long-term exposure to environment concentrations of TPT remains unclear. The morphology and gene expression in the gut and liver were investigated; and 16SrRNA gene amplification sequencing and non-targeted LC-MS/MS metabonomics were investigated after marine medaka (Oryzias melastigma) was treated with 1, 10, and 100 ng/L TPT for 21 days.

View Article and Find Full Text PDF
Article Synopsis
  • Antibiotics, like norfloxacin (NOR), are becoming pollutants in the environment due to their widespread use, leading to harmful effects on aquatic organisms such as fish.
  • A study on juvenile common carp exposed to NOR showed negative impacts on intestinal health, including oxidative stress and changes in immune gene expression.
  • These findings suggest that environmental levels of antibiotics can harm fish health and may pose potential risks to human health as well.
View Article and Find Full Text PDF

Recently, the residues of quinolones have received widespread attention. However, toxicological studies on aquatic organisms are relatively scarce, especially on the liver metabolism and immune effects of these aquatic organisms. In this study, we investigated the toxic effects of carp exposed to 0, 100 ng/L, and 1 mg/L norfloxacin (NOR) at environmental concentrations for 42 days.

View Article and Find Full Text PDF