Publications by authors named "Shamit Kumar"

TRPV5 and TRPV6 are members of the TRP superfamily of ion channels and are present in almost all vertebrates as linked-genes with high homology and functional similarities. Abnormalities in the regulation or function of these two channels cause multiple pathological conditions, making these highly relevant for several diseases and pharmacological applications. In this context, how these two channels differ from each other is largely unknown.

View Article and Find Full Text PDF

Though mitochondria have their own genome and protein synthesis machineries, the majority of the mitochondrial proteins are actually encoded by the nuclear genome. Most of these mitochondrial proteins are imported into specific compartments of the mitochondria due to their mitochondrial target sequence (MTS). Unlike the nuclear target sequence, the MTS of most of the mitochondrial localized proteins remain poorly understood, mainly due to their variability, heterogeneity, unconventional modes of action, mitochondrial potential-dependent transport, and other complexities.

View Article and Find Full Text PDF

Enhanced lipid-droplet formation by adipocytes is a complex process and relevant for obesity. Using knock-out animals, involvement of TRPV4, a thermosensitive ion channel in the obesity has been proposed. However, exact role/s of TRPV4 in adipogenesis and obesity remain unclear and contradictory.

View Article and Find Full Text PDF

Synthetic hyperbranched polyesters with potential therapeutic properties were synthesized using the bifunctional polyethylene glycol or PEG with different molecular weights, ca., 4000, 6000, and 20,000 g/mol, and the trifunctional -aconitic acid or TAA. During polycondensation, a fixed amount of PEG was allowed to react with varying amounts of TAA (1:1 and 1:3) to control the branching extents.

View Article and Find Full Text PDF

TRPM8 is a non-selective cation channel that is expressed in several tissues and cells and also has a unique property to be activated by low-temperature. In this work, we have analyzed the conservation of amino acids that are present in the lipid-water-interface (LWI) region of TRPM8, the region which experiences a microenvironment near the membrane surface. We demonstrate that the amino acids present in the LWI region are more conserved than the transmembrane or even full-length TRPM8, suggesting strong selection pressure in these residues.

View Article and Find Full Text PDF

Background: GPCRs (G-protein-coupled receptors) play a central role in the regulation of smooth muscle cell (SMC) contractility, but the function of SMC-expressed orphan GPCR class C group 5 member C (GPRC5C) is unclear. The aim of this project is to define the role of GPRC5C in SMC in vitro and in vivo.

Methods: We studied the role of GPRC5C in the regulation of SMC contractility and differentiation in human and murine SMC in vitro, as well as in tamoxifen-inducible, SMC-specific GPRC5C knockout mice under basal conditions and in vascular disease in vivo.

View Article and Find Full Text PDF

Treating different types of bone defects is difficult, complicated, time-consuming, and expensive. Here, we demonstrate that transient receptor potential cation channel subfamily V member 4 (TRPV4), a mechanosensitive, thermogated, and nonselective cation channel, is endogenously present in the mesenchymal stem cells (MSCs). TRPV4 regulates both cytosolic Ca levels and mitochondrial health.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) have been reported to modulate bone tissue regeneration and are being extensively utilized in biomedical implementations attributable to their low cytotoxicity, biocompatibility and simplicity of functionalization. Lately, biologically synthesized nanoparticles have acquired popularity because of their environmentally acceptable alternatives for diverse applications. Here we report the green synthesis of AuNPs by taking the biopolymer Carboxymethyl Tamarind (CMT) as a unique reducing as well as a stabilizing agent.

View Article and Find Full Text PDF

Menthol is a small bioactive compound able to cause several physiological changes and has multiple molecular targets. Therefore, cellular response against menthol is complex, and still poorly understood. In this work, we used a human osteosarcoma cell line (Saos-2) and analysed the effect of menthol, especially in terms of cellular, subcellular and molecular aspects.

View Article and Find Full Text PDF
Article Synopsis
  • Different ion channels in osteoblasts are crucial for functions like bio-mineralization, but the details of these processes remain unclear.
  • The study shows that TRPV4, a mechanosensitive ion channel, is found in osteoblast cell lines and when activated, boosts calcium levels and enhances bio-mineralization.
  • Mutations in TRPV4 can lead to various bone disorders, primarily due to changes in mitochondrial function and morphology.
View Article and Find Full Text PDF

Recently, CsPbX (X= Cl, Br, I) nanocrystals (NCs) have evolved as a potential contender for various optoelectronic applications due to some of their excellent photophysical properties. Their superior non-linear optical properties enable them to take part in bioimaging applications due to their longer penetration depth and less scattering effect in living cells. However, the poor stability of perovskite NCs in aqueous media still remains a great challenge for practical usage.

View Article and Find Full Text PDF

T cell activation process is critically affected by temperature and intracellular Ca-signalling. Yet, the nature and the key molecules involved in such complex Ca-signalling is poorly understood. It is mostly assumed that ion channels present in the plasma membrane primarily regulate the cytosolic Ca-levels exclusively.

View Article and Find Full Text PDF

Aim: Mitochondrial fission-fusion events, distribution, and Ca-buffering abilities are relevant for several diseases, yet are poorly understood events. TRPV4 channels are a group of thermosensitive ion channel which regulate cellular and mitochondrial Ca-level. The underlying mechanisms of the change in mitochondrial dynamics upon modulation of TRPV4 channel are ill explored.

View Article and Find Full Text PDF

TRPV4 is associated with the development of neuropathic pain, sensory defects, muscular dystrophies, neurodegenerative disorders, Charcot Marie Tooth and skeletal dysplasia. In all these cases, mitochondrial abnormalities are prominent. Here, we demonstrate that TRPV4, localizes to a subpopulation of mitochondria in various cell lines.

View Article and Find Full Text PDF

Transient receptor potential vanilloid sub-type 4 (TRPV4) is a six transmembrane protein that acts as a non-selective Ca channel. Notably, TRPV4 is present in almost all animals, from lower eukaryotes to humans and is expressed in diverse tissue and cell types. Accordingly, TRPV4 is endogenously expressed in several types of immune cells that represent both innate and adaptive immune systems of higher organism.

View Article and Find Full Text PDF