Publications by authors named "Shahidkhan Pathan"

Targeting Aurora Kinase A (AURKA) to modulate RalA activation offers a promising strategy for tumor suppression in Ras-independent and Ras-dependent cancers. However, clinical use of the AURKA inhibitor MLN8237 (Alisertib) is limited by its hydrophobicity and poor water solubility. To overcome these limitations, here, we developed an enzyme-biodegradable unimolecular micelle (UMM) nanoparticle to deliver MLN8237 (NP) and evaluated its therapeutic efficacy in tumor xenograft models.

View Article and Find Full Text PDF

Uncontrolled rapture of prodrug nano-formulation under physiological concentration gradient is a bottleneck in the effective delivery of anticancer drugs to solid tumors in vivo. The present investigation reports macromolecular nano-compartmentalization in single polymer chain micellar nanoparticle (or unimolecular micelle nanoparticle, UMNp) and demonstrates its therapeutic efficacies in pancreatic cancer xenograft mouse model. The UMNp is engineered in a six-arm enzymatic-biodegradable polycaprolactone star-polymer by employing a divergent approach using identical chemical constituents but varying the arms-lengths.

View Article and Find Full Text PDF

We report a ring-opening polymerization induced self-assembly (ROPISA) synthetic strategy for in-situ encapsulation of fluorescent dye molecules in poly(ʟ-serine) based polypeptide nano-assemblies and demonstrate their cellular bioimaging application. A bulky ʟ-serine N-carboxyanhydride monomer is tailor-made and polymerized using PEG-amine as hydrophilic macroinitiator in water at pH 8.5 to obtain polypeptide block copolymer as stable dispersions in the form of opalescent solutions.

View Article and Find Full Text PDF

Nanocarrier-mediated therapeutic delivery to brain tissue is impeded by tightly controlled transportation across the blood-brain barrier (BBB). Herein, we report a well-defined core-shell star-shaped unimolecular micelle (star-UMM; a single polymer entity) as an efficient BBB-breaching nanoparticle for brain-specific administration of the fluorescent anticancer drug doxorubicin and mapping of brain tissues by the near-infrared biomarker IR780 in mice. The star-UMM was engineered by precisely programming the polymer topology having hydrophobic and hydrophilic polycaprolactone blocks and in-built with lysosomal enzyme-biodegradation stimuli to deliver the payloads at intracellular compartments.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are developing safer cationic polymers for healthcare that can target harmful bacteria without damaging human cells, addressing issues caused by traditional antimicrobial agents.* -
  • The study focuses on creating two types of polymer nanoarchitectures (linear and star-block), which, although chemically identical and positively charged, show different effects: linear structures are toxic to all cells, while star-block structures selectively disrupt bacteria.* -
  • Using imaging techniques and animal studies, the research demonstrated that star polymers can effectively deliver antibiotics, enhancing their efficacy while protecting healthy tissue, paving the way for improved antibacterial treatments.*
View Article and Find Full Text PDF

The major bottleneck in using polymer nanovectors for biomedical application, particularly those based on self-immolative poly(amino ester) (PAE), lies in their uncontrolled autodegradation at physiological pH before they can reach the intended target. Here, an elegant triblock-copolymer strategy is designed to stabilize the unstable PAE chains via zwitterionic interactions under physiological pH (pH 7.4) and precisely program their enzyme-responsive biodegradation specifically within the intracellular compartments, ensuring targeted delivery of the cargoes.

View Article and Find Full Text PDF

The present investigation reports the structural engineering of biodegradable star block polycaprolactone (PCL) to tailor-make aggregated micelles and unimolecular micelles to study their effect on drug delivery aspects in cancer cell lines. Fully PCL-based star block copolymers were designed by varying the arm numbers from two to eight while keeping the arm length constant throughout. Multifunctional initiators were exploited for stepwise solvent-free melt ring-opening polymerization of ε-caprolactone and γ-substituted caprolactone to construct star block copolymers having a PCL hydrophobic core and a carboxylic PCL hydrophilic shell, respectively.

View Article and Find Full Text PDF

We report self-reporting fluorescent polysaccharide polymersome nanoassemblies for enzyme-responsive intracellular delivery of two clinical anticancer drugs doxorubicin (DOX) and cisplatin to study the real-time drug-releasing aspects by fluorescent resonance energy transfer (FRET) bioimaging in live cancer cells. Fluorescent polymersomes were tailor-made by tagging an aggregation-induced emission (AIE) optical chromophore, tetraphenylethylene (TPE), and a plant-based vesicular directing hydrophobic unit through enzyme-biodegradable aliphatic ester chemical linkages in the polysaccharide dextran. The blue-luminescent polymersome self-assembled in water and exhibited excellent encapsulation capability for the red-luminescent anticancer drug DOX.

View Article and Find Full Text PDF