Transmembrane protein 184B (TMEM184B) is an endosomal 7-pass transmembrane protein with evolutionarily conserved roles in synaptic structure and axon degeneration. We report six pediatric cases who have de novo heterozygous variants in TMEM184B; five individuals harbor a rare missense variant, and one individual has an mRNA splice site change. This cohort is unified by overlapping neurodevelopmental deficits including developmental delay, corpus callosum hypoplasia, seizures, and/or microcephaly.
View Article and Find Full Text PDFBackground: The absence of standardized approaches for handling genetic test results in electronic health records (EHRs), combined with a lack of diagnostic codes for most rare disorders, hinders accurate and timely identification of patients with rare genetic variants. This impedes access to research opportunities and genomic-driven care. To reduce the diagnostic odyssey, identify research-eligible subjects, and ultimately enhance patient care, it is critical to optimize approaches to retrieve genetic results.
View Article and Find Full Text PDFOrphanet J Rare Dis
July 2025
Lysosomal storage disorders (LSD) are a group of inherited metabolic diseases that contribute to nonimmune hydrops fetalis (NIHF). Our objective was to review the pooled exome sequencing (ES) diagnostic yield of LSD in NIHF cases. We expanded our previous meta-analysis and updated our search strategy of prenatal ES studies from 1/1/2000 to 8/1/2024.
View Article and Find Full Text PDFHigh-speed atomic force microscopy (HSAFM) can produce thousands of topographic, nanoscale images over a small area. One emerging application of this technique is the detection and sizing of single DNA molecules derived from biological experiments and genetic testing. Using HSAFM images, researchers can visually categorize healthy and mutant DNA based on size and sequence-specific labeling, leading to rapid, high precision diagnostics.
View Article and Find Full Text PDFVariants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is not always specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants. Here, we analyzed a cohort of 6,660 rare disease families (5,625 genetically undiagnosed [84%]) from the Genomics Research to Elucidate the Genetics of Rare diseases (GREGoR) Consortium, as well as other rare disease cohorts.
View Article and Find Full Text PDFWhile variants cause many Mendelian disorders, their detection currently requires sequencing of the proband and both biological parents. This is not feasible when only one parent is available, a limitation for millions of families. We developed , which identifies variants from single parent-proband duos using long-read sequencing followed by haplotype reconstruction and detection of identical-by-descent haplotype blocks.
View Article and Find Full Text PDFVariant calling is hindered in segmental duplications by sequence homology. We developed Paraphase, a HiFi-based informatics method that resolves highly similar genes by phasing all haplotypes of paralogous genes together. We applied Paraphase to 160 long (>10 kb) segmental duplication regions across the human genome with high (>99%) sequence similarity, encoding 316 genes.
View Article and Find Full Text PDFCongenital Adrenal Hyperplasia (CAH), one of the most common inherited disorders, is caused by defects in adrenal steroidogenesis. It is potentially lethal if untreated and is associated with multiple comorbidities, including fertility issues, obesity, insulin resistance, and dyslipidemia. CAH can result from variants in multiple genes, but the most frequent cause is deletions and conversions in the segmentally duplicated RCCX module, which contains the gene and a pseudogene.
View Article and Find Full Text PDFAm J Hum Genet
March 2025
Dysregulation of genes encoding the homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases has been linked to cancer and structural birth defects. One member of this family, the HECT-domain-containing protein 1 (HECTD1), mediates developmental pathways, including cell signaling, gene expression, and embryogenesis. Through GeneMatcher, we identified 14 unrelated individuals with 15 different variants in HECTD1 (10 missense, 3 frameshift, 1 nonsense, and 1 splicing variant) with neurodevelopmental disorders (NDDs), including autism, attention-deficit/hyperactivity disorder, and epilepsy.
View Article and Find Full Text PDFMore than 50% of families with suspected rare monogenic diseases remain unsolved after whole-genome analysis by short-read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare-disease cohort of 98 samples from 41 families, using nanopore sequencing, achieving per sample ∼36× average coverage and 32-kb read N50 from a single flow cell.
View Article and Find Full Text PDFRare diseases are collectively common, affecting approximately one in twenty individuals worldwide. In recent years, rapid progress has been made in rare disease diagnostics due to advances in DNA sequencing, development of new computational and experimental approaches to prioritize genes and genetic variants, and increased global exchange of clinical and genetic data. However, more than half of individuals suspected to have a rare disease lack a genetic diagnosis.
View Article and Find Full Text PDFBackground: Variants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is often not specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants.
Methods: Using dedicated pipelines to address the technical challenges posed by the mtDNA - circular genome, variant heteroplasmy, and nuclear misalignment - single nucleotide variants, small indels, and large mtDNA deletions were called from exome and genome sequencing data, in addition to RNA-sequencing when available.
Purpose: Advancements in sequencing technologies have significantly improved clinical genetic testing, yet the diagnostic yield remains around 30-40%. Emerging sequencing technologies are now being deployed in the clinical setting to address the remaining diagnostic gap.
Methods: We tested whether short-read genome sequencing could increase diagnostic yield in individuals enrolled into the UCI-GREGoR research study, who had suspected Mendelian conditions and prior inconclusive clinical genetic testing.
Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes. Increasingly, large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA as a novel syndromic NDD gene.
View Article and Find Full Text PDF