Publications by authors named "Seongkeun Oh"

ZnMgO nanoparticles (ZMO NPs) are widely used as electron transport layers in optoelectronic devices such as light-emitting diodes (LEDs) and photodiodes (PDs) primarily because of their facile synthesis and excellent electron transport properties. However, the surface hydroxyl groups (‒OH) on the ZMO NPs introduce charge traps, inhibit electron transport, and reduce device stability, particularly under ambient humidity and oxygen. Therefore, in this study, an alcohol treatment (AT) method was developed to remove surface ‒OH via proton transfer to effectively reduce trap states and dipole moments and enhance surface passivation.

View Article and Find Full Text PDF
Article Synopsis
  • The presence of polystyrenesulfonate (PSS) in PEDOT:PSS negatively impacts charge transfer in quantum dot light-emitting diodes (QLEDs).
  • A two-step solvent treatment significantly reduced PSS by 40%, enhancing the conductivity of PEDOT due to weaker ionic interactions facilitated by ethylene glycol.
  • Following the treatment, improved electroluminescence performance was observed in InP QLEDs, achieving an external quantum efficiency of 6.4% and an operational lifetime of 125.6 hours.
View Article and Find Full Text PDF

In this study, a novel synthesis of ultrathin, highly uniform colloidal bismuth sulfohalide (BiSX where X = Cl, Br, I) nanowires (NWs) and NW bundles (NBs) for room-temperature and solution-processed flexible photodetectors are presented. High-aspect-ratio bismuth sulfobromide (BiSBr) NWs are synthesized via a heat-up method using bismuth bromide and elemental S as precursors and 1-dodecanethiol as a solvent. Bundling of the BiSBr NWs occurs upon the addition of 1-octadecene as a co-solvent.

View Article and Find Full Text PDF

In this study, we present ultrasensitive infrared photodiodes based on PbS colloidal quantum dots (CQDs) using a double photomultiplication strategy that utilizes the accumulation of both electron and hole carriers. While electron accumulation was induced by ZnO trap states that were created by treatment in a humid atmosphere, hole accumulation was achieved using a long-chain ligand that increased the barrier to hole collection. Interestingly, we obtained the highest responsivity in photo-multiplicative devices with the long ligands, which contradicts the conventional belief that shorter ligands are more effective for optoelectronic devices.

View Article and Find Full Text PDF

In this study, we design a smart building block with quantum-dot light-emitting diode (QLED) and colored radiative cooling devices. A smart light-emitting building block is fabricated using a bottom-inverted QLED that emits green light, an insulating layer, and a top radiative cooling structure that emits mid-infrared light. The heat generated during QLED operation is measured and analyzed to investigate the correlation between heat and QLED degradation.

View Article and Find Full Text PDF
Article Synopsis
  • Perovskite nanocrystals (NCs) are promising materials for electronic devices due to their high efficiency but face challenges with stability and surface quality.
  • A new strategy inspired by drug delivery systems involves doping Ag into CsPbBr (CPB) NCs to enhance their structural stability by targeting and repairing defects.
  • Experimental and theoretical analyses show that this approach improves the optical properties of the NCs, making them suitable for applications like white light-emitting diodes.
View Article and Find Full Text PDF
Article Synopsis
  • The rising demand for self-powered photodetectors (PDs) for near-infrared (NIR) applications, like LIDAR and object recognition, is addressed through advancements in lead sulfide quantum dot-based photodetectors (PbS QPDs).
  • A key challenge for PbS QPDs is their self-powered operation, which is negatively affected by carrier traps from surface defects and poor band alignment in the zinc oxide nanoparticle (ZnO NP) electron-transport layer (ETL).
  • This study presents a novel treatment using azide ions on the ZnO NP ETL, resulting in improved carrier lifetime, mobility, and overall performance metrics, showing significant enhancements in responsivity and detectivity
View Article and Find Full Text PDF

Amorphous metal oxide semiconductor phototransistors (MOTPs) integrated with colloidal quantum dots (QDs) (QD-MOTPs) are promising infrared photodetectors owing to their high photoconductive gain, low off-current level, and high compatibility with pixel circuits. However, to date, the poor mobility of conventional MOTPs, such as indium gallium zinc oxide (IGZO), and the toxicity of lead (Pb)-based QDs, such as lead sulfide and lead selenide, has limited the commercial applications of QD-MOTPs. Herein, an ultrasensitive QD-MOTP fabricated by integrating a high-mobility zinc oxynitride (ZnON)-based MOTP and lead-free indium arsenide (InAs) QDs is demonstrated.

View Article and Find Full Text PDF

Hybrid quantum dot light-emitting diodes (QLEDs) with double emitting layers (EMLs) were developed to achieve highly efficient white emission. The first emitting layer comprised blue and green quantum dots that were deposited by spin-coating, and the second emitting layer comprised red phosphorescent organic molecules that were deposited by thermal evaporation without any buffer layer. These unique trichromatic devices showed three distinct electroluminescent (EL) peaks with similar intensities at 15 V and the variation of the EL spectra with applied voltage was investigated systematically.

View Article and Find Full Text PDF