Publications by authors named "Seong Hun Yoon"

This study examined the reliability of state-of-the-art -IGZO thin-film transistors (TFTs) for next-generation micro-LED (μ-LED) display applications under high drain current stress at 120 °C. Although the control -IGZO TFTs annealed at 300 °C exhibited excellent stability under the traditional PBTS conditions at 60 °C, the PBTS test at the elevated temperature of 120 °C resulted in a significant positive shift (Δ). In contrast, the high-quality (HQ) -IGZO TFTs annealed at 400 °C exhibited markedly improved electrical stability, even in the PBTS test at 120 °C.

View Article and Find Full Text PDF

For potential application in advanced memory devices such as dynamic random-access memory (DRAM) or NAND flash, nanolaminated indium oxide (In-O) and gallium oxide (Ga-O) films with five different vertical cation distributions were grown and investigated by using a plasma-enhanced atomic layer deposition (PEALD) process. Specifically, this study provides an in-depth examination of how the control of individual layer thicknesses in the nanolaminated (NL) IGO structure impacts not only the physical and chemical properties of the thin film but also the overall device performance. To eliminate the influence of the cation composition ratio and overall thickness on the IGO thin film, these parameters were held constant across all conditions.

View Article and Find Full Text PDF

This study introduces a novel method for achieving highly ordered-crystalline InGaO [0 ≤ x ≤ 0.6] thin films on Si substrates at 250 °C using plasma-enhanced atomic-layer-deposition (PEALD) with dual seed crystal layers (SCLs) of γ-AlO and ZnO. Field-effect transistors (FETs) with random polycrystalline InGaO channels (grown without SCLs) show a mobility (µFE) of 85.

View Article and Find Full Text PDF

Oxide semiconductors have gained significant attention in electronic device industry due to their high potential for emerging thin-film transistor (TFT) applications. However, electrical contact properties such as specific contact resistivity (ρ) and width-normalized contact resistance (RW) are significantly inferior in oxide TFTs compared to conventional silicon metal oxide semiconductor field-effect transistors. In this study, a multi-stack interlayer (IL) consisting of titanium nitride (TiN) and indium-gallium-tin-oxide (IGTO) is inserted between source/drain electrodes and amorphous indium-gallium-zinc-oxide (IGZO).

View Article and Find Full Text PDF

As the downscaling of conventional dynamic random-access memory (DRAM) has reached its limits, 3D DRAM has been proposed as a next-generation DRAM cell architecture. However, incorporating silicon into 3D DRAM technology faces various challenges in securing cost-effective high cell transistor performance. Therefore, many researchers are exploring the application of next-generation semiconductor materials, such as transition oxide semiconductors (OSs) and metal dichalcogenides (TMDs), to address these challenges and to realize 3D DRAM.

View Article and Find Full Text PDF

Amorphous IGZO (a-IGZO) thin-film transistors (TFTs) are standard backplane electronics to power active-matrix organic light-emitting diode (AMOLED) televisions due to their high carrier mobility and negligible low leakage characteristics. Despite their advantages, limitations in color depth arise from a steep subthreshold swing (SS) (≤ 0.1 V/decade), necessitating costly external compensation for IGZO transistors.

View Article and Find Full Text PDF

Indium oxide (InO) is a transparent wide-bandgap semiconductor suitable for use in the back-end-of-line-compatible channel layers of heterogeneous monolithic three-dimensional (M3D) devices. The structural, chemical, and electrical properties of InO films deposited by plasma-enhanced atomic layer deposition (PEALD) were examined using two different liquid-based precursors: (3-(dimethylamino)propyl)-dimethyl indium (DADI) and (,-dimethylbutylamine)trimethylindium (DATI). DATI-derived InO films had higher growth per cycle (GPC), superior crystallinity, and low defect density compared with DADI-derived InO films.

View Article and Find Full Text PDF

In this paper, the feasibility of an indium-gallium oxide (InGaO) film through combinatorial atomic layer deposition (ALD) as an alternative channel material for back-end-of-line (BEOL) compatible transistor applications is studied. The microstructure of random polycrystalline InO with a bixbyite structure was converted to the amorphous phase of InGaO film under thermal annealing at 400 °C when the fraction of Ga is ≥29 at. %.

View Article and Find Full Text PDF

Afatinib is a target anticancer drug of the second-generation EGFR TKI type, showing an advantage in treatment effect compared to conventional chemotherapy. However, patients on EGFR-TKI drugs also usually progress after 9 to 13 months according to secondary resistance. HAD-B1 is composed of drugs that are effective against lung cancer.

View Article and Find Full Text PDF

Cocaine constriction of the cerebral vasculature is thought to contribute to the ischemia associated with cocaine use. However, the mechanisms whereby cocaine elicits relevant vasoconstriction remain elusive. Indeed, proposed intra- and intercellular mechanisms based on over 3 decades of ex vivo vascular studies are, for the most part, of questionable relevancy due to the generally low contractile efficacy of cocaine combined with the use of nonresistance-type vessels.

View Article and Find Full Text PDF

The role of endothelin (ET)(A)-ET(B) receptor cross-talk in limiting the ET(A) receptor antagonist inhibition of ET-1 constriction is revealed by the partial or complete dependency of the ET(A) receptor antagonist inhibition on functional removal of the ET(B) receptor. Although functional removal of the ET(B) receptor is generally accomplished with ET(B) receptor antagonist, a novel approach using rats containing a naturally occurring deletion mutation in the ET(B) receptor [rescued "spotting lethal" (sl) rats; ET(B)(sl/sl)] demonstrated increased ET(A) receptor antagonist inhibition of ET-1 constriction in vena cava. We investigated whether this deletion mutation was also sufficient to remove the ET(B) receptor dependency of the ET(A) receptor antagonist inhibition of ET-1 constriction in the basilar artery.

View Article and Find Full Text PDF

This study investigated whether cocaine constriction of rat basilar artery in situ is mediated by nitric oxide (NO) inhibition and/or endothelin (ET)-1 release. Cocaine (3-100 µmol/l) concentration-dependently constricted the basilar artery to a maximum of 18%. Nω-nitro-L-arginine (100 µmol/l) was without effect on constriction to 3 and 10 µmol/l cocaine.

View Article and Find Full Text PDF

This study investigated the involvement of sensory nerves and, in particular, neuronal transient receptor potential vanilloid (TRPV) 1 channels, in the CO(2)-mediated regulation of cerebrovascular tone. Basilar artery diameter and blood flow velocity in the ventral midbrain were determined in a rat cranial window preparation by digital imaging and laser-Doppler flowmetry, respectively. Superfusion of the basilar artery with capsaicin, a selective TRPV1 receptor agonist, caused a transient relaxation, consistent with acute desensitization of neuronal TRPV1 channels.

View Article and Find Full Text PDF

The rationale for the therapeutic use of dual as opposed to selective endothelin (ET) receptor antagonists stems in part from cross-talk between the ET(A) and ET(B) receptors. However, whether ET(A)-ET(B) receptor cross-talk is present in the cerebral vasculature is difficult to discern since findings of cross-talk contrast even among the few reports available. Thus, this study tested whether ET(A)-ET(B) receptor cross-talk is present in the rat basilar artery.

View Article and Find Full Text PDF

It has been postulated that ischemic stroke due to acute cocaine usage involves constriction of the cerebral vasculature. However, the mechanism underlying the constriction remains unclear. This study tested whether cocaine constriction was mediated via endothelin-1.

View Article and Find Full Text PDF

This study tested the hypothesis that vasospasm due to subarachnoid hemorrhage involves the functional upregulation of protein kinase C. Spasm of the rabbit basilar artery was achieved using a double hemorrhage model, which we previously demonstrated was endothelin-1 dependent. In situ effects of agents were determined by direct measurement of vessel diameter following their suffusion in a cranial window.

View Article and Find Full Text PDF

The purpose of this study was to test whether constriction of the cerebral vasculature in response to respiration-induced hypocapnia was mimicked by isocapnic alkaline solution. Since the regulation of the cerebral vasculature by hypocapnia necessitates vessels to constrict repeatedly in response to hypocapnic challenge, we tested whether repeated challenge with isocapnic alkaline solution was also associated with constriction. In contrast to our previous demonstration that repeated hypocapnic challenge elicited constrictions of similar magnitudes in rabbit basilar artery in situ, repeated challenge with isocapnic alkaline solution resulted in reduced constriction.

View Article and Find Full Text PDF