Publications by authors named "Sebastien Banzet"

Background: Hemorrhagic shock (HS) corresponds to absolute hypovolemia creating an imbalance between oxygen supply and consumption. This causes an impaired hemostasis, a systemic inflammatory response, and microvascular permeability which can lead to multiple organ failure (MOF). There is no specific treatment for the endothelial dysfunction that plays a major role in the evolution towards MOF.

View Article and Find Full Text PDF

Why severe injury to the central nervous system (CNS) triggers the development of large neurogenic heterotopic ossifications (NHOs) within periarticular muscles remains unknown. We report that spinal cord injury (SCI) triggers a rapid corticosterone spike in mice, which is causal for NHO development because treatments with corticosterone or the synthetic glucocorticoid (GC) receptor (GR) agonist dexamethasone are sufficient to trigger heterotopic ossification and upregulate the expression of osteoinductive and osteogenic differentiation genes in injured muscles even without SCI. The central role for GR signaling in causing NHO is further demonstrated in mice deleted for the GR gene (Nr3c1), which no longer develop NHO after SCI.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) is a promising complement to tissue repair and regenerative medicine approaches. CAP has therapeutic potential in infected cutaneous wounds by mechanisms which remain enigmatic. Here, CAP is shown to activate phagocyte NADPH oxidase complex NOX2.

View Article and Find Full Text PDF

Despite several advances in the field of regenerative medicine, clinical management of extensive skin wounds or burns remains a major therapeutic issue. During the past few years, Mesenchymal Stromal Cells (MSCs) have emerged as a novel therapeutic tool to promote tissue repair through their anti-inflammatory, pro-trophic and pro-remodeling effects. They exert their biological activity mainly via the secretion of soluble bioactive molecules such as cytokines, growth factors, proteins and microRNAs which can be encapsulated within extracellular vesicles (EV).

View Article and Find Full Text PDF

Neurogenic heterotopic ossifications are intramuscular bone formations developing following central nervous system injury. The pathophysiology is poorly understood and current treatments for this debilitating condition remain unsatisfying. Here we explored the role of miRNAs in a clinically relevant mouse model that combines muscle and spinal cord injury, and in patients' cells.

View Article and Find Full Text PDF
Article Synopsis
  • Research using a mouse model of spinal cord injury revealed that lipopolysaccharides (LPS) from gram-negative bacteria worsen NHO development via a specific receptor pathway, but not through gut-related endotoxins.
  • Additionally, a study found that infections from gram-negative bacteria, such as Pseudomonas, are linked to increased NHO in patients with traumatic brain injuries, highlighting the importance of managing infections to reduce the risk of NHO.
View Article and Find Full Text PDF

A new paradigm has emerged recently, which consists in shifting from cell therapy to a more flexible acellular "extracellular vesicle (EV) therapy" approach, thereby opening a new and promising field in nanomedicine. Important technical limitations have still to be addressed for the large-scale production of clinical-grade EV. Cells are cultured in media supplemented with human platelet lysate (hPL) (xenogenic-free) or GMP-grade fetal calf serum (FCS).

View Article and Find Full Text PDF
Article Synopsis
  • The neuromuscular system shows a phenomenon called the repeated bout effect (RBE), where it adapts quickly to muscle damage from exercise, resulting in less impact from subsequent workouts.
  • Researchers studied how plasma muscle-specific microRNAs (myomiRs) change due to RBE and their potential role in predicting long-term muscle strength deficits after exercise.
  • Key findings included that certain myomiR levels and other markers, like creatine kinase and myoglobin, were less affected after a second exercise session, indicating RBE, and these markers combined were effective at predicting long-lasting muscle torque deficits.
View Article and Find Full Text PDF
Article Synopsis
  • Neurogenic heterotopic ossifications (NHOs) commonly occur in muscles after spinal cord injuries (SCIs) and brain injuries, but the exact cells responsible for their formation are uncertain as muscle contains both satellite cells (SCs) and fibroadipogenic progenitors (FAPs).
  • Researchers used a gene-tracing technique in mice to show that after muscle injury, SCs fail to regenerate while FAPs increase in number due to upregulated PDGFRα expression, leading to their transformation into bone-forming cells (osteoblasts) that contribute to NHOs.
  • Biopsy analysis from human NHO cases confirmed that the problematic FAPs originate from the injured muscle
View Article and Find Full Text PDF

Neurogenic heterotopic ossifications (NHOs) form in periarticular muscles after severe spinal cord (SCI) and traumatic brain injuries. The pathogenesis of NHO is poorly understood with no effective preventive treatment. The only curative treatment remains surgical resection of pathological NHOs.

View Article and Find Full Text PDF

Extracellular vesicles (EV) are emergent therapeutic effectors that have reached clinical trial investigation. To translate EV-based therapeutic to clinic, the challenge is to demonstrate quality, safety, and efficacy, as required for any medicinal product. EV research translation into medicinal products is an exciting and challenging perspective.

View Article and Find Full Text PDF

Severe trauma is the principal cause of death among young people worldwide. Hemorrhagic shock is the leading cause of death after severe trauma. Traumatic hemorrhagic shock (THS) is a complex phenomenon associating an absolute hypovolemia secondary to a sudden and significant extravascular blood loss, tissue injury, and, eventually, hypoxemia.

View Article and Find Full Text PDF

Background: Organ damages following hemorrhagic shock (HS) have been partly attributed to an immunological dysfunction. The current challenge in the management of HS patients is to prevent organ injury-induced morbidity and mortality which currently has not etiological treatment available. Mesenchymal stromal cells (MSC) are used in clinical cell therapy for immunomodulation and tissue repair.

View Article and Find Full Text PDF

Macrophages are important immune cells that are involved in the elimination of microbial pathogens. Following host invasion, macrophages are recruited to the site of infection, where they launch antimicrobial defense mechanisms. Effective microbial clearance by macrophages depends on phagocytosis and phagolysosomal killing mediated by oxidative burst, acidification, and degradative enzymes.

View Article and Find Full Text PDF

Hematopoiesis and bone interact in various developmental and pathological processes. Neurogenic heterotopic ossifications (NHO) are the formation of ectopic hematopoietic bones in peri-articular muscles that develop following severe lesions of the central nervous system such as traumatic cerebral or spinal injuries or strokes. This review will focus on the hematopoietic facet of NHO.

View Article and Find Full Text PDF

Mesenchymal stromal cell (MSC)-based cell therapy has received great interest in regenerative medicine. Priming the cells during the culture phase can improve their efficacy and/or survival after injection. The literature suggests that MSC extracellular vesicles (EV) can recapitulate a substantial part of the beneficial effects of the cells they originate from, and that micro-RNAs (miRNAs) are important players in EV biological action.

View Article and Find Full Text PDF

Skin grafting is a surgical method of cutaneous reconstruction, which provides volumetric replacement in wounds unable to heal by primary intention. Clinically, full-thickness skin grafts (FTSGs) are placed in aesthetically sensitive and mechanically demanding areas such as the hands, face, and neck. Complete or partial graft failure is the primary complication associated with this surgical procedure.

View Article and Find Full Text PDF

Trivial superficial wounds heal without complications by primary intention. Deep wounds, such as full thickness burns, heal by secondary intention and require surgical debridement and skin grafting. Successful integration of the donor graft into a recipient wound bed depends on timely recruitment of immune cells, robust angiogenic response and new extracellular matrix formation.

View Article and Find Full Text PDF

Background: Cardiovascular diseases are the main cause of morbidity and mortality worldwide. Restoring blood supply to ischemic tissues is an essential goal for the successful treatment of these diseases. Growth factor or gene therapy efficacy remains controversial, but stem cell transplantation is emerging as an interesting approach to stimulate angiogenesis.

View Article and Find Full Text PDF

Extracellular matrices (ECM) rich in type I collagen exhibit characteristic anisotropic ultrastructures. Nevertheless, working in vitro with this biomacromolecule remains challenging. When processed, denaturation of the collagen molecule is easily induced in vitro avoiding proper fibril self-assembly and further hierarchical order.

View Article and Find Full Text PDF

Septic patients often die in a context of multiple organ dysfunction syndrome (MODS), despite the macro-hemodynamic parameters being normalized and after the onset of antibiotic therapy. Microcirculation injury during sepsis affects capillary permeability and leukocyte-endothelium interactions and is thought to be instrumental in organ injury. Several studies have demonstrated a beneficial effect of mesenchymal stromal cells (MSCs) injection on survival and organ dysfunctions in sepsis models.

View Article and Find Full Text PDF

Since the 1980s, deep and extensive skin wounds and burns are treated with autologous split-thickness skin grafts, or cultured epidermal autografts, when donor sites are limited. However, the clinical use of cultured epidermal autografts often remains unsatisfactory because of poor engraftment rates, altered wound healing, and reduced skin functionality. In the past few decades, mesenchymal stromal cells (MSCs) have raised much attention because of their anti-inflammatory, protrophic, and pro-remodeling capacities.

View Article and Find Full Text PDF

Treatment with cold atmospheric plasma (CAP) has been reported to promote wound healing in animals. However, how this process is mediated remains unclear. In this study we examined the mechanisms which underlie the improved wound healing effects of CAP and the roles of associated reactive oxygen and nitrogen species (RONS), which are generated by plasma.

View Article and Find Full Text PDF

Although skeletal muscle is capable of complete recovery after an injury, specific situations require support or acceleration of this process, such as in the elderly and athletes, respectively. Skeletal muscle regeneration is due to muscle stem cells (MuSCs) that undergo adult myogenesis, a process sustained by MuSC environment. Although recognized as important, extracellular matrix (ECM) has been overlooked in this process.

View Article and Find Full Text PDF