Environ Toxicol Chem
July 2025
Ecotoxicity assessments often struggle with contaminant mixtures. This study explored combining chemical activity of hydrophobic organic contaminants (HOCs) and metals, using zinc as a model. An acute Daphnia magna immobilization test, with protein content as an additional endpoint, revealed an additive sublethal effect.
View Article and Find Full Text PDFEnviron Toxicol Chem
February 2025
Guidelines for ecotoxicity testing with Daphnia magna specify particular feeding protocols during the exposure, yet standardization for preexposure feeding remains ambiguous despite its recognized significance in affecting organismal metabolic capacity and tolerance. This ambiguity may contribute to disparate responses and heightened uncertainty in determining the effect concentrations of test chemicals, particularly those inducing metabolic effects through narcosis. Here, we address this gap through a three-step dose-response experiment with neonates of D.
View Article and Find Full Text PDFEnviron Sci Process Impacts
November 2024
Hydrophobic organic contaminants (HOCs) affect phytoplankton at cellular to population levels, ultimately impacting communities and ecosystems. Baseline toxicants, such as some HOCs, predominantly partition to biological membranes and storage lipids. Predicting their toxic effects on phytoplankton populations therefore requires consideration beyond cell uptake and diffusion.
View Article and Find Full Text PDFEnviron Sci Process Impacts
February 2024
As a large group of chemicals with diverse properties, per- and polyfluoroalkyl substances (PFAS) have found extensive application throughout consumer products, including cosmetics. Little is known about the importance of dermal uptake as a human exposure pathway for PFAS. Here we investigate a suite of listed-ingredient and residual PFAS in cosmetic products, along with their dermal bioaccessibility using incubations with artificial sweat.
View Article and Find Full Text PDFThe production and release of chemicals from human activities are on the rise. Understanding how the aquatic environment is affected by the presence of an unknown number of chemicals is lacking. We employed the chemical activity concept to assess the combined effects of hydrophobic organic contaminants on the phytoplankton species Rodomonas salina.
View Article and Find Full Text PDFPersistent organic pollutants (POPs) pose a risk in aquatic environments. In sediment, this risk is frequently evaluated using total or organic carbon-normalized concentrations. However, complex physicochemical sediment characteristics affect POP bioavailability in sediment, making its prediction a challenging task.
View Article and Find Full Text PDFBurial of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) in deep-sea sediments contributes to 60% of their historical emissions. Yet, empirical data on their occurrence in the deep-ocean is scarce. Estimates of the deep-ocean POP sink are therefore uncertain.
View Article and Find Full Text PDFEcotoxicol Environ Saf
March 2022
Bioaccumulation of persistent and hydrophobic organic compounds in the aquatic environment puts secondary consumers, such as fish, at risk. To assess their exposure, monitoring programs with high numbers of individuals have been conducted worldwide over decades that require major efforts and raise ethical issues. This study aimed at testing suspended particulate matter (SPM) as an alternative and accessible abiotic matrix to estimate the internal exposure concentrations of such chemicals in fish and mussels.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
August 2019
Whereas specially designed dinitroxide biradicals, reconstitution protocols, oriented sample geometries and NMR probes have helped to much increase the DNP enhancement factors of membrane samples they still lag considerably behind those obtained from glasses made of protein solutions. Here we show that not only the MAS rotor material but also the distribution of the membrane samples within the NMR rotor have a pronounced effect on the DNP enhancement. These observations are rationalized with the cooling efficiency and the internal properties of the sample, monitored by their T relaxation, microwave ON versus OFF signal intensities and DNP effect.
View Article and Find Full Text PDFEnviron Sci Technol
March 2019
Applying activated carbon (AC) to contaminated sediments is an in-situ approach to remediation with great potential. The bioavailability of persistent organic pollutants can be rapidly reduced and kept low over long periods of time. However, there are limitations to the method.
View Article and Find Full Text PDFThere are several methods for studying metal-contaminated freshwater sediments, but more information is needed on which methods to include in ecological risk assessment. In this study, we compliment the traditional Sediment Quality Triad (SQT) approach - including information on chemistry, toxicity and ecological status - with studies on metal bioavailability and metal body residues in local organisms. We studied four mining-affected boreal lakes in Finland by conducting chemical analyses of sediment and water, toxicity tests (L.
View Article and Find Full Text PDFThe in situ remediation of aquatic sediments with activated carbon (AC)-based thin layer capping is a promising alternative to traditional methods, such as sediment dredging. Applying a strong sorbent like AC directly to the sediment can greatly reduce the bioavailability of organic pollutants. To evaluate the method under realistic field conditions, a 300 m plot in the PCB-contaminated Lake Kernaalanjärvi, Finland, was amended with an AC cap (1.
View Article and Find Full Text PDFJ Chem Technol Biotechnol
August 2017
Background: In situ sorbent amendment for persistent organic pollutant sequestration in sediment has over the past 15 years steadily progressed from bench-scale trials to full-scale remediation applications. Hindering a wider technology uptake are, however, concerns about ecotoxic side-effects of the most commonly used sorbent, activated carbon, on sensitive, sediment dwelling organisms like Lumbriculus variegatus. Using River Tyne sediment polluted with polycyclic aromatic hydrocarbons (PAHs) and L.
View Article and Find Full Text PDFActivated carbon (AC) has been proven to be highly effective for the in-situ remediation of sediments contaminated with a wide range of hydrophobic organic contaminants (HOCs). However, adverse biological effects, especially to benthic organisms, can accompany this promising remediation potential. In this study, we compare both the remediation potential and the biological effects of several AC materials for two application methods: mixing with sediment (MIX) at doses of 0.
View Article and Find Full Text PDFThe biological effects of activated carbon (AC) amendments in sediments were studied with the midge Chironomus riparius. The effects on larvae growth were studied using three different AC particles sizes (PAC: 90% <63μm, MAC: ø 63-200μm and GAC: ø 420-1700μm). The long- term effects of MAC were studied in an emergence experiment over two generations (P, F1), together with larvae growth experiment over three generations (P, F1, F2).
View Article and Find Full Text PDFThe nonbiting midge Chironomus riparius was used to study the remediation potential and secondary effects of activated carbon (AC, ø 63-200 μm) in PCB contaminated sediments. AC amendments efficiently reduced PCB bioavailability determined by Chironomus riparius bioaccumulation tests and passive samplers. PCBs were shown to transfer from larvae to adults.
View Article and Find Full Text PDFAddition of activated carbon (AC) or biochar (BC) to sediment to reduce the chemical and biological availability of organic contaminants is a promising in-situ remediation technology. But concerns about leaving the adsorbed pollutants in place motivate research into sorbent recovery methods. This study explores the use of magnetic sorbents.
View Article and Find Full Text PDF