Publications by authors named "Sean D Gallaher"

Cross-kingdom microbial symbioses, such as those between algae and bacteria, are key players in biogeochemical cycles. The molecular changes during initiation and establishment of symbiosis are of great interest, but quantitatively monitoring such changes can be challenging, particularly when the microorganisms differ greatly in size or are intimately associated. Here, we analyze output from data-dependent acquisition (DDA) LC-MS/MS proteomics experiments investigating the well-studied interaction between the alga and the heterotrophic bacterium .

View Article and Find Full Text PDF

Iron (Fe) availability limits photosynthesis at a global scale where Fe-rich photosystem (PS) I abundance is drastically reduced in Fe-poor environments. We used single-particle cryoelectron microscopy to reveal a unique Fe starvation-dependent arrangement of light-harvesting chlorophyll (LHC) proteins where Fe starvation-induced TIDI1 is found in an additional tetramer of LHC proteins associated with PSI in and . These cosmopolitan green algae are resilient to poor Fe nutrition.

View Article and Find Full Text PDF

Photosynthetic organisms coordinate their metabolism and growth with diurnal light, which can range in intensity from limiting to excessive. Little is known about how light intensity impacts the diurnal program in Chlamydomonas reinhardtii, or how diurnal rhythms in gene expression and metabolism shape photoprotective responses at different times of day. To address these questions, we performed a systems analysis of synchronized Chlamydomonas populations acclimated to low, moderate, and high diurnal light.

View Article and Find Full Text PDF

Advances in sequencing technology have unveiled examples of nucleus-encoded polycistrons, once considered rare. Exclusively polycistronic transcripts are prevalent in green algae, although the mechanism by which multiple polypeptides are translated from a single transcript is unknown. Here, we used bioinformatic and in vivo mutational analyses to evaluate competing mechanistic models for translation of bicistronic mRNAs in green algae.

View Article and Find Full Text PDF

Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia.

View Article and Find Full Text PDF

Iron (Fe) availability limits photosynthesis at a global scale where Fe-rich photosystem (PS) I abundance is drastically reduced in Fe-poor environments. We used single-particle cryo-electron microscopy to reveal a unique Fe starvation-dependent arrangement of light-harvesting chlorophyll (LHC) proteins where Fe starvation-induced TIDI1 is found in an additional tetramer of LHC proteins associated with PSI in and . These cosmopolitan green algae are resilient to poor Fe nutrition.

View Article and Find Full Text PDF

Advances in sequencing technology have unveiled examples of nucleus-encoded polycistronic genes, once considered rare. Exclusively polycistronic transcripts are prevalent in green algae, although the mechanism by which multiple polypeptides are translated from a single transcript is unknown. Here, we used bioinformatic and in vivo mutational analyses to evaluate competing mechanistic models for polycistronic expression in green algae.

View Article and Find Full Text PDF

Energy status and nutrients regulate photosynthetic protein expression. The unicellular green alga Chromochloris zofingiensis switches off photosynthesis in the presence of exogenous glucose (+Glc) in a process that depends on hexokinase (HXK1). Here, we show that this response requires that cells lack sufficient iron (-Fe).

View Article and Find Full Text PDF

Low iron (Fe) bioavailability can limit the biosynthesis of Fe-containing proteins, which are especially abundant in photosynthetic organisms, thus negatively affecting global primary productivity. Understanding cellular coping mechanisms under Fe limitation is therefore of great interest. We surveyed the temporal responses of Chlamydomonas (Chlamydomonas reinhardtii) cells transitioning from an Fe-rich to an Fe-free medium to document their short and long-term adjustments.

View Article and Find Full Text PDF

Oxygen is known to prevent hydrogen production in Chlamydomonas, both by inhibiting the hydrogenase enzyme and by preventing the accumulation of HYDA-encoding transcripts. We developed a screen for mutants showing constitutive accumulation of transcripts in the presence of oxygen. A reporter gene required for ciliary motility, placed under the control of the promoter, conferred motility only in hypoxic conditions.

View Article and Find Full Text PDF

Gene functional descriptions offer a crucial line of evidence for candidate genes underlying trait variation. Conversely, plant responses to environmental cues represent important resources to decipher gene function and subsequently provide molecular targets for plant improvement through gene editing. However, biological roles of large proportions of genes across the plant phylogeny are poorly annotated.

View Article and Find Full Text PDF

Marine algae are responsible for half of the world's primary productivity, but this critical carbon sink is often constrained by insufficient iron. One species of marine algae, , is remarkable for its ability to maintain photosynthesis and thrive in low-iron environments. A related species, Bardawil, shares this attribute but is an extremophile found in hypersaline environments.

View Article and Find Full Text PDF

Five versions of the Chlamydomonas reinhardtii reference genome have been produced over the last two decades. Here we present version 6, bringing significant advances in assembly quality and structural annotations. PacBio-based chromosome-level assemblies for two laboratory strains, CC-503 and CC-4532, provide resources for the plus and minus mating-type alleles.

View Article and Find Full Text PDF

Polycistronic gene expression, common in prokaryotes, was thought to be extremely rare in eukaryotes. The development of long-read sequencing of full-length transcript isomers (Iso-Seq) has facilitated a reexamination of that dogma. Using Iso-Seq, we discovered hundreds of examples of polycistronic expression of nuclear genes in two divergent species of green algae: and Here, we employ a range of independent approaches to validate that multiple proteins are translated from a common transcript for hundreds of loci.

View Article and Find Full Text PDF

Silencing of exogenous DNA can make transgene expression very inefficient. Genetic screens in the model alga Chlamydomonas have demonstrated that transgene silencing can be overcome by mutations in unknown gene(s), thus producing algal strains that stably express foreign genes to high levels. Here, we show that the silencing mechanism specifically acts on transgenic DNA.

View Article and Find Full Text PDF

Light and nutrients are critical regulators of photosynthesis and metabolism in plants and algae. Many algae have the metabolic flexibility to grow photoautotrophically, heterotrophically, or mixotrophically. Here, we describe reversible Glc-dependent repression/activation of oxygenic photosynthesis in the unicellular green alga We observed rapid and reversible changes in photosynthesis, in the photosynthetic apparatus, in thylakoid ultrastructure, and in energy stores including lipids and starch.

View Article and Find Full Text PDF

The unicellular green alga displays metabolic flexibility in response to a changing environment. We analyzed expression patterns of its three genomes in cells grown under light-dark cycles. Nearly 85% of transcribed genes show differential expression, with different sets of transcripts being up-regulated over the course of the day to coordinate cellular growth before undergoing cell division.

View Article and Find Full Text PDF

Microalgae are an attractive feedstock organism for sustainable production of biofuels, chemicals, and biomaterials, but the ability to rationally engineer microalgae to enhance production has been limited. To enable the evolution-based selection of new hyperproducing variants of microalgae, a method is developed that combines phase-transitioning monodisperse gelatin hydrogel droplets with commercial flow cytometric instruments for high-throughput screening and selection of clonal populations of cells with desirable properties, such as high lipid productivity per time traced over multiple cell cycles. It is found that gelatin microgels enable i) the growth and metabolite (e.

View Article and Find Full Text PDF

is a unicellular green alga that is an emerging model species for studies in fields such as biofuel production, ketocarotenoid biosynthesis and metabolism. The recent availability of a high-quality genome assembly facilitates systems-level analysis, such as RNA-Seq. However, cells of this alga have a tough cell wall, which is a challenge for RNA purification.

View Article and Find Full Text PDF

Chlamydomonas reinhardtii is a unicellular chlorophyte alga that is widely studied as a reference organism for understanding photosynthesis, sensory and motile cilia, and for development of an algal-based platform for producing biofuels and bio-products. Its highly repetitive, ~205-kbp circular chloroplast genome and ~15.8-kbp linear mitochondrial genome were sequenced prior to the advent of high-throughput sequencing technologies.

View Article and Find Full Text PDF

In land plants, linear tetrapyrrole (bilin)-based phytochrome photosensors optimize photosynthetic light capture by mediating massive reprogramming of gene expression. But, surprisingly, many green algal genomes lack phytochrome genes. Studies of the heme oxygenase mutant () of the green alga suggest that bilin biosynthesis in plastids is essential for proper regulation of a nuclear gene network implicated in oxygen detoxification during dark-to-light transitions.

View Article and Find Full Text PDF

Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga , because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions.

View Article and Find Full Text PDF

Background: The transcriptional corepressor Groucho (Gro) is required for the function of many developmentally regulated DNA binding repressors, thus helping to define the gene expression profile of each cell during development. The ability of Gro to repress transcription at a distance together with its ability to oligomerize and bind to histones has led to the suggestion that Gro may spread along chromatin. However, much is unknown about the mechanism of Gro-mediated repression and about the dynamics of Gro targeting.

View Article and Find Full Text PDF

Background: Improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids.

Results: We sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol.

View Article and Find Full Text PDF