Objectives: The amino acid homocysteine (HCY) has been implicated in the pathobiology of several conditions, including spaceflight-associated neuro-ocular syndrome (SANS)-a collection of symptoms affecting near vision in astronauts. Blood-retinal barrier (BRB) and blood-brain barrier (BBB) dysfunctions are implicated in the pathobiology of SANS. Our objective was to assess how HCY affects BRB/BBB permeability and the role of the NLRP3 inflammasome in the modulation of such effects.
View Article and Find Full Text PDFObjective: The blood-brain barrier (BBB) is a semi-permeable microvascular barrier, composed of endothelial cells conjoined by tight junction proteins. Following pathological conditions, i.e.
View Article and Find Full Text PDFDouble-atom site catalysts (DASs) have emerged as a recent trend in the oxygen reduction reaction (ORR), thereby modifying the intermediate adsorption energies and increasing the activity. However, the lack of an efficient dual atom site to improve activity and durability has limited these catalysts from widespread application. Herein, the nitrogen-coordinated iron and tin-based DASs (Fe-Sn-N/C) catalyst are synthesized for ORR.
View Article and Find Full Text PDFMethods Mol Biol
October 2023
We present a simple and quantitative assay system that accurately models human endothelium by use of primary human umbilical vein endothelial cells (HUVECs) in cell culture plates coated with gelatin, a matrix that mimics basal lamina, the matrix that is tightly associated with the vascular endothelium and is critical for its proper function. We describe using this system to quantitatively measure adhesion of the inflammatory cells - monocytic THP-1 cell line to the HUVEC monolayer. The THP-1 cells are fluorescently labeled which allows to quantify the number of the fluorescent THP-1 cells adhering to the endothelium under a microscope and the level of florescence - a quantitative measure of the number of adhering fluorescent THP-1 cells using a fluorescent plate reader.
View Article and Find Full Text PDFJ Mol Cell Biol
December 2022
Stable transmission of genetic information during cell division requires faithful mitotic spindle assembly and chromosome segregation. In eukaryotic cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Although a list of mitotic kinases has been implicated in NEBD, how they coordinate their activity to dissolve the nuclear envelope and protein machinery such as nuclear pore complexes was unclear.
View Article and Find Full Text PDFERG (ETS-related gene) is a member of the ETS (Erythroblast-transformation specific) family of transcription factors abundantly present in vascular endothelial cells. Recent studies demonstrate that ERG has important roles in blood vessel stability and angiogenesis. However, it is unclear how ERG is potentially involved in microvascular barrier functions and permeability.
View Article and Find Full Text PDFA heterobimetallic corrole complex, comprising oxygen reduction reaction (ORR) active non-precious metals Co and Fe with a corrole-N4 center (PhFCC), is successfully synthesized and used to prepare a dual-atom molecular catalyst (DAMC) through subsequent low-temperature pyrolysis. This low-temperature pyrolyzed electrocatalyst exhibited impressive ORR performance, with onset potentials of 0.86 and 0.
View Article and Find Full Text PDFEzrin, a membrane-cytoskeleton linker protein, plays an essential role in cell polarity establishment, cell migration, and division. Recent studies show that ezrin phosphorylation regulates breast cancer metastasis by promoting cancer cell survivor and promotes intrahepatic metastasis via cell migration. However, it was less characterized whether there are additional post-translational modifications and/or post-translational crosstalks on ezrin underlying context-dependent breast cancer cell migration and invasion.
View Article and Find Full Text PDFWe report the synthesis of lightweight, free-standing Ni-Fe@rGO porous interconnects by carbothermal reduction of Ni-FeOx using graphene oxide (GO) as the reducing agent. Here, we take advantage of the oxygen functionalities present in GO to aid in anchoring the metal ions followed by epoxide-assisted Ni-FeOx@GO network formation. When pyrolyzed under inert conditions, Ni-FeOx@GO networks were converted to Ni-Fe@rGO by simple carbothermal metal reduction at 800 °C.
View Article and Find Full Text PDF