Spin glasses are quintessential examples of complex matter. Although their ordering lacks complete theoretical understanding, abstract models of spin glasses inform problems in other fields, such as combinatorial optimization and artificial intelligence-where they form a mathematical basis for neural network computing. We demonstrate the ability to realize a spin glass of a distinct driven-dissipative and vector form.
View Article and Find Full Text PDFWe construct an ensemble of two-dimensional nonintegrable quantum circuits that are chaotic but have a conserved particle current, and thus a finite Drude weight. The long-wavelength hydrodynamics of such systems is given by the incompressible Navier-Stokes equations. By analyzing circuit-to-circuit fluctuations in the ensemble we argue that these are negligible, so the circuit-averaged value of transport coefficients like the viscosity is also (in the long-time limit) the value in a typical circuit.
View Article and Find Full Text PDFThe Kondo effect is a prototypical strongly correlated phenomenon, and it is usually discussed in the context of unitary dynamics. Here, we demonstrate that the Kondo effect can be induced through non-linear dissipative channels, without requiring any coherent interaction on the impurity site. Specifically, we consider a reservoir of noninteracting fermions that can hop on a few impurity sites that are subjected to strong two-body losses.
View Article and Find Full Text PDFThe lifetime of superconducting qubits is limited by dielectric loss, and a major source of dielectric loss is the native oxide present at the surface of the superconducting metal. Specifically, tantalum-based superconducting qubits have been demonstrated with record lifetimes, but a major source of loss is the presence of two-level systems in the surface tantalum oxide. Here, we demonstrate a strategy for avoiding oxide formation by encapsulating the tantalum with noble metals that do not form native oxide.
View Article and Find Full Text PDFSteady-state currents generically occur both in systems with continuous translation invariance and in nonequilibrium settings with particle drift. In either case, thermal fluctuations advected by the current act as a source of noise for slower hydrodynamic modes. This noise is unconventional, since it is highly correlated along spacetime rays.
View Article and Find Full Text PDFPhys Rev Lett
January 2025
We present a family of local quantum channels whose steady states exhibit stable mixed-state symmetry-protected topological (SPT) order. Motivated by recent experimental progress on "erasure conversion" techniques that allow one to identify (herald) decoherence processes, we consider open systems with biased erasure noise, which leads to strongly symmetric heralded errors. We utilize this heralding to construct a local correction protocol that effectively confines errors into short-ranged pairs in the steady state.
View Article and Find Full Text PDFWe present a scalable protocol for measuring full counting statistics (FCS) in experiments or tensor-network simulations. In this method, an ancilla in the middle of the system acts as a turnstile, with its phase keeping track of the time-integrated particle flux. Unlike quantum gas microscopy, the turnstile protocol faithfully captures FCS starting from number-indefinite initial states or in the presence of noisy dynamics.
View Article and Find Full Text PDFDirac fluids-interacting systems obeying particle-hole symmetry and Lorentz invariance-are among the simplest hydrodynamic systems; they have also been studied as effective descriptions of transport in strongly interacting Dirac semimetals. Direct experimental signatures of the Dirac fluid are elusive, as its charge transport is diffusive as in conventional metals. In this paper, we point out a striking consequence of fluctuating relativistic hydrodynamics: The full counting statistics (FCS) of charge transport is highly non-Gaussian.
View Article and Find Full Text PDFQuantum many-body scars are notable as nonthermal, low-entanglement states that exist at high energies. In this study, we used attractively interacting dysprosium gases to create scar states that are stable enough to be driven into a strongly nonlinear regime while retaining their character. We measured how the kinetic and total energies evolve after quenching the confining potential.
View Article and Find Full Text PDFAlthough integrable spin chains host only ballistically propagating particles, they can still feature diffusive charge transfer. This diffusive charge transfer originates from quasiparticle charge fluctuations inherited from the initial state's magnetization Gaussian fluctuations. We show that ensembles of initial states with quasi-long-range correlations lead to superdiffusive charge transfer with a tunable dynamical exponent.
View Article and Find Full Text PDFPhys Rev Lett
January 2024
We explore the effects of spatial locality on the dynamics of random quantum systems subject to a Markovian noise. To this end, we study a model in which the system Hamiltonian and its couplings to the noise are random matrices whose entries decay as power laws of distance, with distinct exponents α_{H}, α_{L}. The steady state is always featureless, but the rate at which it is approached exhibits three phases depending on α_{H} and α_{L}: a phase where the approach is asymptotically exponential as a result of a gap in the spectrum of the Lindblad superoperator that generates the dynamics, and two gapless phases with subexponential relaxation, distinguished by the manner in which the gap decreases with system size.
View Article and Find Full Text PDFWe demonstrate that nonlinear response functions in many-body systems carry a sharp signature of interactions between gapped low-energy quasiparticles. Such interactions are challenging to deduce from linear response measurements. The signature takes the form of a divergent-in-time contribution to the response-linear in time in the case when quasiparticles propagate ballistically-that is absent for free bosonic excitations.
View Article and Find Full Text PDFPhys Rev Lett
November 2023
Finite temperature spin transport in integrable isotropic spin chains is known to be superdiffusive, with dynamical spin correlations that are conjectured to fall into the Kardar-Parisi-Zhang (KPZ) universality class. However, integrable spin chains have time-reversal and parity symmetries that are absent from the KPZ (Kardar-Parisi-Zhang) or stochastic Burgers equation, which force higher-order spin fluctuations to deviate from standard KPZ predictions. We put forward a nonlinear fluctuating hydrodynamic theory consisting of two coupled stochastic modes: the local spin magnetization and its effective velocity.
View Article and Find Full Text PDFHydrodynamics accurately describe relativistic heavy-ion collision experiments well before local thermal equilibrium is established. This unexpectedly rapid onset of hydrodynamics-which takes place on the fastest available timescale-is called hydrodynamization. It occurs when an interacting quantum system is quenched with an energy density that is much greater than its ground-state energy density.
View Article and Find Full Text PDFPhys Rev Lett
January 2023
Many experimentally relevant systems are quasi-one-dimensional, consisting of nearly decoupled chains. In these systems, there is a natural separation of scales between the strong intrachain interactions and the weak interchain coupling. When the intrachain interactions are integrable, weak interchain couplings play a crucial part in thermalizing the system.
View Article and Find Full Text PDFPhys Rev Lett
November 2022
We consider monitored quantum systems with a global conserved charge, and ask how efficiently an observer ("eavesdropper") can learn the global charge of such systems from local projective measurements. We find phase transitions as a function of the measurement rate, depending on how much information about the quantum dynamics the eavesdropper has access to. For random unitary circuits with U(1) symmetry, we present an optimal classical classifier to reconstruct the global charge from local measurement outcomes only.
View Article and Find Full Text PDFPhys Rev Lett
September 2022
Monitored quantum circuits (MRCs) exhibit a measurement-induced phase transition between area-law and volume-law entanglement scaling. MRCs with a conserved charge additionally exhibit two distinct volume-law entangled phases that cannot be characterized by equilibrium notions of symmetry-breaking or topological order, but rather by the nonequilibrium dynamics and steady-state distribution of charge fluctuations. These include a charge-fuzzy phase in which charge information is rapidly scrambled leading to slowly decaying spatial fluctuations of charge in the steady state, and a charge-sharp phase in which measurements collapse quantum fluctuations of charge without destroying the volume-law entanglement of neutral degrees of freedom.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2022
We address spin transport in the easy-axis Heisenberg spin chain subject to different integrability-breaking perturbations. We find subdiffusive spin transport characterized by dynamical exponent = 4 up to a timescale parametrically long in the anisotropy. In the limit of infinite anisotropy, transport is subdiffusive at all times; for finite anisotropy, one eventually recovers diffusion at late times but with a diffusion constant independent of the strength of the perturbation and solely fixed by the value of the anisotropy.
View Article and Find Full Text PDFThe Kardar-Parisi-Zhang (KPZ) universality class describes the coarse-grained behavior of a wealth of classical stochastic models. Surprisingly, KPZ universality was recently conjectured to also describe spin transport in the one-dimensional quantum Heisenberg model. We tested this conjecture by experimentally probing transport in a cold-atom quantum simulator via the relaxation of domain walls in spin chains of up to 50 spins.
View Article and Find Full Text PDFQuantized sound waves-phonons-govern the elastic response of crystalline materials, and also play an integral part in determining their thermodynamic properties and electrical response (for example, by binding electrons into superconducting Cooper pairs). The physics of lattice phonons and elasticity is absent in simulators of quantum solids constructed of neutral atoms in periodic light potentials: unlike real solids, traditional optical lattices are silent because they are infinitely stiff. Optical-lattice realizations of crystals therefore lack some of the central dynamical degrees of freedom that determine the low-temperature properties of real materials.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021