Publications by authors named "Sarah Deville"

Article Synopsis
  • Bacterial extracellular vesicles (BEVs) play a crucial role in bacterial communication and could potentially be used as biomarkers and treatments in both ecological and medical contexts.
  • The analysis of 845 publications from 2015-2021 highlights the complexity of BEV research due to variations in their composition and features, with over 3338 related experiments documented.
  • The authors stress the importance of transparent reporting in BEV studies, identify existing knowledge gaps, and suggest best practices to enhance research quality and hasten the application of BEVs in various fields.
View Article and Find Full Text PDF

The identification of the molecular composition of extracellular vesicles (EV) by omics approaches, including proteomics, requires the separation of EV from non-EV confounding factors present in the source biofluid. In this protocol, we present the sequential implementation of density gradient ultracentrifugation and size-exclusion chromatography to prepare EV from cell-conditioned medium with high specificity and repeatability. This approach enables the recovery of intact purified EV suited for downstream functional assays and biomarker discovery by omics approaches.

View Article and Find Full Text PDF

Extracellular vesicles are membrane-bound carriers with complex cargoes, which play a major role in intercellular communication, for instance, in the context of the immune response. Macrophages are known to release extracellular vesicles in response to different stimuli, and changes in their size, number, and composition may provide important insights into the responses induced. Macrophages are also known to be highly efficient in clearing nanoparticles, when in contact with them, and in triggering the immune system.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell-derived structures surrounded by a lipid bilayer that carry RNA and DNA as potential templates for molecular diagnostics, e.g., in cancer genotyping.

View Article and Find Full Text PDF

The design of targeted nanomedicines requires intracellular space- and time-resolved data of nanoparticle distribution following uptake. Current methods to study intracellular trafficking, such as dynamic colocalization by fluorescence microscopy in live cells, are usually low throughput and require extensive analysis of large datasets to quantify colocalization in several individual cells. Here a method based on flow cytometry to easily detect and characterize the organelles in which nanoparticles are internalized and trafficked over time is proposed.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are of interest for a wide variety of biomedical applications. A major limitation for the clinical use of EVs is the lack of standardized methods for the fast and reproducible separation and subsequent detection of EV subpopulations from biofluids, as well as their storage. To advance this application area, fluorescence-based characterization technologies with single-EV resolution, such as high-sensitivity flow cytometry (HS-FCM), are powerful to allow assessment of EV fractionation methods and storage conditions.

View Article and Find Full Text PDF

Biomimetic functionalization to confer stealth and targeting properties to nanoparticles is a field of intense study. Extracellular vesicles (EV), sub-micron delivery vehicles for intercellular communication, have unique characteristics for drug delivery. We investigated the top-down functionalization of gold nanoparticles with extracellular vesicle membranes, including both lipids and associated membrane proteins, through mechanical extrusion.

View Article and Find Full Text PDF

Blood vessel formation or angiogenesis is a key process for successful tooth regeneration. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) possess paracrine proangiogenic properties, which are, at least partially, induced by their extracellular vesicles (EVs). However, the isolation of BM-MSCs is associated with several drawbacks, which could be overcome by MSC-like cells of the teeth, called dental pulp stromal cells (DPSCs).

View Article and Find Full Text PDF

Macrophages play a major role in the removal of foreign materials, including nano-sized materials, such as nanomedicines and other nanoparticles, which they accumulate very efficiently. Because of this, it is recognized that for a safe development of nanotechnologies and nanomedicine, it is essential to investigate potential effects induced by nano-sized materials on macrophages. To this aim, in this work, a recently established model of primary murine alveolar-like macrophages was used to investigate macrophage responses to two well-known nanoparticle models: 50 nm amino-modified polystyrene, known to induce cell death via lysosomal damage and apoptosis in different cell types, and 50 nm silica nanoparticles, which are generally considered non-toxic.

View Article and Find Full Text PDF

Nanosized objects, such as nanoparticles and other drug carriers used in nanomedicine, once in contact with biological environments are modified by adsorption of biomolecules on their surface. The presence of this corona strongly affects the following interactions at cell and organism levels. It has been shown that corona proteins can be recognized by cell receptors.

View Article and Find Full Text PDF

Background: Human hematopoietic progenitor cells (HPCs) are important for cell therapy in cancer and tissue regeneration. In vitro studies have shown a transient association of 40 nm polystyrene nanoparticles (PS NPs) with these cells, which is of interest for intelligent design and application of NPs in HPC-based regenerative protocols. In this study, we aimed to investigate the involvement of nanoparticles' size and membrane-attached glycan molecules in the interaction of HPCs with PS NPs, and compared it with monocytes.

View Article and Find Full Text PDF
Article Synopsis
  • There's been a lot of new research on tiny structures called extracellular vesicles (EVs) that cells release, which help us understand how cells work and what goes wrong in diseases.
  • Scientists have had a hard time studying these EVs because they come in different types and can be tough to separate and analyze properly.
  • The International Society for Extracellular Vesicles updated their guidelines, called MISEV2018, to help researchers share clear information about how to study EVs and ensure their findings are accurate and reliable.
View Article and Find Full Text PDF

Objectives: In this study, we investigate in human cervical epithelial HeLa cells the intracellular dynamics and the mutual interaction with the organelles of the poly-l-lactic acid nanoparticles (PLLA NPs) carrying the naturally occurring hydrophobic photosensitizer hypericin.

Methods: Temporal and spatiotemporal image correlation spectroscopy was used for the assessment of the intracellular diffusion and directed motion of the nanocarriers by tracking the hypericin fluorescence. Using image cross-correlation spectroscopy and specific fluorescent labelling of endosomes, lysosomes and mitochondria, the NPs dynamics in association with the cell organelles was studied.

View Article and Find Full Text PDF

CD34 hematopoietic progenitor cells (HPCs) offer great opportunities to develop new treatments for numerous malignant and non-malignant diseases. Nanoparticle (NP)-based strategies can further enhance this potential, and therefore a thorough understanding of the loading behavior of HPCs towards NPs is essential for a successful application. The present study focusses on the interaction kinetics of 40 nm sized carboxylated polystyrene (PS) NPs with HPCs.

View Article and Find Full Text PDF

Despite many investigations have focused on the pristine toxicity of gold nanoparticles (GNPs), little is known about the outcome of co-exposure and interaction of GNPs with heavy metals which can possibly detoxify or potentiate them. Here, the combined exposure of nickel (II) sulfate (NiSO) and GNPs on the maturation response of dendritic cells (DCs) was explored. Exposure to GNPs or NiSO separately induced cell activation.

View Article and Find Full Text PDF

The study of cell-nanoparticle interactions is an important aspect for understanding drug delivery using nanocarriers. In this regard, advances in fluorescence based microscopy are useful for the investigation of temporal and spatial behavior of nanoparticles (NPs) within the intracellular environment. In this work, we focus on the delivery of the naturally-occurring hydrophobic photosensitizer Hypericin in human lung carcinoma A549 cells by using biodegradable poly L-lactic acid NPs.

View Article and Find Full Text PDF

Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS).

View Article and Find Full Text PDF

PVP-Hypericin (PVP: polyvinylpyrrolidone) is a potent anti-cancer photosensitizer for photodynamic diagnosis (PDD) and therapy (PDT). However, cellular targets and mechanisms involved in the cancer-selectivity of the photosensitizer are not yet fully understood. This paper gives new insights into the differential transport and localization of PVP-Hypericin in cancer and normal cells which are essential to unravel the mechanisms of action and cancer-selectivity.

View Article and Find Full Text PDF

In a rat model of global fetal and perinatal asphyxia, we investigated if asphyxia and long-lasting brain tolerance to asphyxia (preconditioning) are mediated by modifications in inflammatory cytokines and ceramide metabolism genes in prefrontal cortex, hippocampus and caudate-putamen at the age of 8months. Most significant changes were found in prefrontal cortex, with reduced LAG1 homolog ceramide synthase 1 expression after both types of asphyxia. Additionally, sphingosine kinase 1 was upregulated in those animals that experienced the combination of fetal and perinatal asphyxia (preconditioning), suggesting increased cell proliferation.

View Article and Find Full Text PDF