Publications by authors named "Sankaran Sandhya"

Toxin-antitoxin (TA) systems in bacteria consist of two genes: one encoding a toxin that inhibits essential cellular processes and the other encoding an antitoxin that neutralizes the toxin under homeostatic conditions. TA systems are classified into eight types (I to VIII) based on the mechanism of toxin inhibition by the antitoxin. Type III TA systems comprise a protein toxin that is usually an endoribonuclease and an RNA antitoxin and are further classified into toxIN, cptIN, and tenpIN families based on toxin sequence homology.

View Article and Find Full Text PDF

Proteins such as enzymes perform their function by predominant non-covalent bond interactions between transiently interacting units. There is an impact on the overall structural topology of the protein, albeit transient nature of such interactions, that enable proteins to deactivate or activate. This aspect of the alteration of the structural topology is studied by employing protein structural networks, which are node-edge representative models of protein structure, reported as a robust tool for capturing interactions between residues.

View Article and Find Full Text PDF

RNA is the key player in many cellular processes such as signal transduction, replication, transport, cell division, transcription, and translation. These diverse functions are accomplished through interactions of RNA with proteins. However, protein-RNA interactions are still poorly derstood in contrast to protein-protein and protein-DNA interactions.

View Article and Find Full Text PDF

Sequence-based approaches are fundamental to guide experimental investigations in obtaining structural and/or functional insights into uncharacterized protein families. Powerful profile-based sequence search methods rely on a sequence space continuum to identify non-trivial relationships through homology detection. The computational design of protein-like sequences that serve as "artificial linkers" is useful in identifying relationships between distant members of a structural fold.

View Article and Find Full Text PDF

Multi-protein assemblies are complex molecular systems that perform highly sophisticated biochemical functions in an orchestrated manner. They are subject to changes that are governed by the evolution of individual components. We performed a comparative analysis of the ancient and functionally conserved spliceosomal SF3b complex, to recognize molecular signatures that contribute to sequence divergence and functional specializations.

View Article and Find Full Text PDF

The evolution of homologous and functionally equivalent multiprotein assemblies is intriguing considering sequence divergence of constituent proteins. Here, we studied the implications of protein sequence divergence on the structure, dynamics and function of homologous yeast and human SF3b spliceosomal subcomplexes. Human and yeast SF3b comprise of 7 and 6 proteins respectively, with all yeast proteins homologous to their human counterparts at moderate sequence identity.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) systems are proposed to play crucial roles in bacterial growth under stress conditions such as phage infection. The type III TA systems consist of a protein toxin whose activity is inhibited by a noncoding RNA antitoxin. The toxin is an endoribonuclease, while the antitoxin consists of multiple repeats of RNA.

View Article and Find Full Text PDF

Ribosomes play a critical role in maintaining cellular proteostasis. The binding of messenger RNA (mRNA) to the ribosome regulates kinetics of protein synthesis. To generate an understanding of the structural, mechanistic, and dynamical features of mRNA recognition in the ribosome, we have analysed mRNA-protein interactions through a structural comparison of the ribosomal complex in the presence and absence of mRNA.

View Article and Find Full Text PDF

Afrotheria is a clade of African-origin species with striking dissimilarities in appearance and habitat. In this study, we compared whole proteome sequences of six Afrotherian species to obtain a broad viewpoint of their underlying molecular make-up, to recognize potentially unique proteomic signatures. We find that 62% of the proteomes studied here, predominantly involved in metabolism, are orthologous, while the number of homologous proteins between individual species is as high as 99.

View Article and Find Full Text PDF

genome encodes over 80 toxin-antitoxin (TA) systems. While each toxin interacts with its cognate antitoxin, the abundance of TA systems presents an opportunity for potential non-cognate interactions. TA systems mediate manifold interactions to manage pathogenicity and stress response network of the cell and non-cognate interactions may play vital roles as well.

View Article and Find Full Text PDF

High divergence in protein sequences makes the detection of distant protein relationships through homology-based approaches challenging. Grouping protein sequences into families, through similarities in either sequence or 3-D structure, facilitates in the improved recognition of protein relationships. In addition, strategically designed protein-like sequences have been shown to bridge distant structural domain families by serving as artificial linkers.

View Article and Find Full Text PDF

possesses an unusually large representation of type II toxin-antitoxin (TA) systems, whose functions and targets are mostly unknown. To better understand the basis of their unique expansion and to probe putative functional similarities among these systems, here we computationally and experimentally investigated their sequence relationships. Bioinformatic and phylogenetic investigations revealed that 51 sequences of the VapBC toxin family group into paralogous sub-clusters.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) systems are ubiquitously existing addiction modules with essential roles in bacterial persistence and virulence. The genome of Mycobacterium tuberculosis encodes approximately 79 TA systems. Through computational and experimental investigations, we report for the first time that Rv0366c-Rv0367c is a non-canonical PezAT-like toxin-antitoxin system in M.

View Article and Find Full Text PDF

BAF250a and BAF250b are subunits of the SWI/SNF chromatin-remodeling complex that recruit the complex to chromatin allowing transcriptional activation of several genes. Despite being the central subunits of the SWI/SNF complex, the structural and functional annotation of BAF250a/b remains poorly understood. BAF250a (nearly 2200 residues protein) harbors an N-terminal DNA binding ARID (~110 residues) and a C-terminal folded region (~250 residues) of unknown structure and function, recently annotated as BAF250_C.

View Article and Find Full Text PDF

Background: Knowledge of the protein structure is a pre-requisite for improved understanding of molecular function. The gap in the sequence-structure space has increased in the post-genomic era. Grouping related protein sequences into families can aid in narrowing the gap.

View Article and Find Full Text PDF

The possibility of coexistence of multiple isomers for zirconium bis(phenoxy-imine) catalyst has been systematically studied by computational approaches. The energetics among the five different isomers of neutral Zr-catalyst have been assessed quantum mechanically. The results suggest that isomer cis-N/trans-O/cis-Me is the most stable among the five isomers in accordance with the general observations of these kinds of phenoxy-imine catalyst.

View Article and Find Full Text PDF

Design of proteins has far-reaching potentials in diverse areas that span repurposing of the protein scaffold for reactions and substrates that they were not naturally meant for, to catching a glimpse of the ephemeral proteins that nature might have sampled during evolution. These non-natural proteins, either in synthesized or virtual form have opened the scope for the design of entities that not only rival their natural counterparts but also offer a chance to visualize the protein space continuum that might help to relate proteins and understand their associations. Here, we review the recent advances in protein engineering and design, in multiple areas, with a view to drawing attention to their future potential.

View Article and Find Full Text PDF

Background: In the post-genomic era where sequences are being determined at a rapid rate, we are highly reliant on computational methods for their tentative biochemical characterization. The Pfam database currently contains 3,786 families corresponding to "Domains of Unknown Function" (DUF) or "Uncharacterized Protein Family" (UPF), of which 3,087 families have no reported three-dimensional structure, constituting almost one-fourth of the known protein families in search for both structure and function.

Results: We applied a 'computational structural genomics' approach using five state-of-the-art remote similarity detection methods to detect the relationship between uncharacterized DUFs and domain families of known structures.

View Article and Find Full Text PDF

Background: Understanding channel structures that lead to active sites or traverse the molecule is important in the study of molecular functions such as ion, ligand, and small molecule transport. Efficient methods for extracting, storing, and analyzing protein channels are required to support such studies. Further, there is a need for an integrated framework that supports computation of the channels, interactive exploration of their structure, and detailed visual analysis of their properties.

View Article and Find Full Text PDF

Histones regulate a variety of chromatin templated events by their post-translational modifications (PTMs). Although there are extensive reports on the PTMs of canonical histones, the information on the histone variants remains very scanty. Here, we report the identification of different PTMs, such as acetylation, methylation, and phosphorylation of a major mammalian histone variant TH2B.

View Article and Find Full Text PDF

Efforts from the TB Structural Genomics Consortium together with those of tuberculosis structural biologists worldwide have led to the determination of about 350 structures, making up nearly a tenth of the pathogen's proteome. Given that knowledge of protein structures is essential to obtaining a high-resolution understanding of the underlying biology, it is desirable to have a structural view of the entire proteome. Indeed, structure prediction methods have advanced sufficiently to allow structural models of many more proteins to be built based on homology modeling and fold recognition strategies.

View Article and Find Full Text PDF

Protein functional annotation relies on the identification of accurate relationships, sequence divergence being a key factor. This is especially evident when distant protein relationships are demonstrated only with three-dimensional structures. To address this challenge, we describe a computational approach to purposefully bridge gaps between related protein families through directed design of protein-like "linker" sequences.

View Article and Find Full Text PDF

Background: Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A.

View Article and Find Full Text PDF

Of the ∼4000 ORFs identified through the genome sequence of Mycobacterium tuberculosis (TB) H37Rv, experimentally determined structures are available for 312. Since knowledge of protein structures is essential to obtain a high-resolution understanding of the underlying biology, we seek to obtain a structural annotation for the genome, using computational methods. Structural models were obtained and validated for ∼2877 ORFs, covering ∼70% of the genome.

View Article and Find Full Text PDF