Publications by authors named "Samuel Starko"

Kelp forests offer substantial carbon fixation, with the potential to contribute to natural climate solutions (NCS). However, to be included in national NCS inventories, governments must first quantify the kelp-derived carbon stocks and fluxes leading to carbon sequestration. Here, we present a blueprint for assessing the national blue carbon capacity of kelp forests in which data synthesis and Bayesian hierarchical modeling enable estimates of kelp carbon production, storage, and export capacity from limited data.

View Article and Find Full Text PDF

The transition from interbreeding populations to species continues to represent difficult terrain for phylogenetic investigations. Genotyping entire genomes holds promise for enhancing insights into the process of speciation and evolutionary relationships among recently speciated taxa. Northeast Pacific ribbon kelp was once recognized as four species before they were folded into Alaria marginata based on DNA barcodes, although several lineages continue to be recognized.

View Article and Find Full Text PDF

Temperate seaweed forests are among the most productive and widespread habitats in coastal waters. However, they are under threat from climate change and other anthropogenic stressors. To effectively conserve and manage these ecosystems under these rising pressures, an understanding of the genetic diversity and structure of habitat-forming seaweeds will be necessary.

View Article and Find Full Text PDF

Kelp forests are among the most abundant and productive marine ecosystems but are under threat from climate change and other anthropogenic stressors. Although knowledge is growing about how the abundance and distribution of kelp forests are changing, much less is known about the "non-lethal" effects that global change is having on the performance and health of kelp populations in areas where they persist. Here we assessed the age distribution of two common stipitate kelp species, Laminaria setchelli and Pterygophora californica, at Wizard Islet in Barkley Sound, British Columbia, Canada, and compared these data to historical demographic data collected by De Wreede (1984) and Klinger and DeWreede (1988) from the same site between 1981 and 1983.

View Article and Find Full Text PDF

Kelp forests are declining in many parts of the northeast Pacific. In small populations, genetic drift can reduce adaptive variation and increase fixation of recessive deleterious alleles, but natural selection may purge harmful variants. To understand evolutionary dynamics and inform restoration strategies, we investigated genetic structure and the outcomes of genetic drift and purging by sequencing the genomes of 429 bull kelp (Nereocystis luetkeana) and 211 giant kelp (Macrocystis sp.

View Article and Find Full Text PDF
Article Synopsis
  • * Different marine species react differently to these heatwaves, making it hard for scientists to predict what will happen to ecosystems.
  • * The article discusses three key ways local environmental factors affect how marine species respond to MHWs, and emphasizes the need for better monitoring to help manage these issues.
View Article and Find Full Text PDF

Branching stipe morphologies have evolved multiple times across the kelp (Laminariales) lineage, creating morphological forms that drive the complexity of kelp forest habitats. Although branching is likely a complicated developmental process, it has evolved repeatedly through kelp evolution and the processes facilitating the emergence of branched forms from unbranched ancestors remain unclear. Here I report on abnormally branched individuals ( = 9) from five kelp species found in British Columbia, Canada that had atypical bifurcations in their stipes, creating a single dichotomous branch.

View Article and Find Full Text PDF

As on land, oceans exhibit high temporal and spatial temperature variation. This "ocean weather" contributes to the physiological and ecological processes that ultimately determine the patterns of species distribution and abundance, yet is often unrecognized, especially in tropical oceans. Here, we tested the paradigm of temperature stability in shallow waters (<12.

View Article and Find Full Text PDF

Kelp forests are among the most valuable ecosystems on Earth, but they are increasingly being degraded and lost due to a range of human-related stressors, leading to recent calls for their improved management and conservation. One of the primary tools to conserve marine species and biodiversity is the establishment of marine protected areas (MPAs). International commitments to protect 30% of the world's ecosystems are gaining momentum, offering a promising avenue to secure kelp forests into the Anthropocene.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is causing significant species losses and shifts, particularly affecting intertidal ecosystems where organisms like the high intertidal kelp, Postelsia palmaeformis, could be vulnerable due to their thermal limits and recent heatwaves.
  • Research conducted in 2021 and 2022 aimed to assess the current state of P. palmaeformis populations in the northeast Pacific, comparing data to earlier surveys from 2006 and 2007.
  • Findings indicated population stability, with P. palmaeformis still present throughout the study area, along with signs of slight distribution expansion and adaptations like increased blade lengths and earlier reproduction, suggesting resilience possibly due to favorable environmental conditions.
View Article and Find Full Text PDF

Marine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves.

View Article and Find Full Text PDF

Climate change-amplified marine heatwaves can drive extensive mortality in foundation species. However, a paucity of longitudinal genomic datasets has impeded understanding of how these rapid selection events alter cryptic genetic structure. Heatwave impacts may be exacerbated in species that engage in obligate symbioses, where the genetics of multiple coevolving taxa may be affected.

View Article and Find Full Text PDF

Multiple anthropogenic stressors co-occur ubiquitously in natural ecosystems. However, multiple stressor studies often produce conflicting results, potentially because the nature and direction of stressor interactions depends upon the strength of the underlying stressors. Here, we first examine how coral α- and β-diversities vary across sites spanning a gradient of chronic local anthropogenic stress before and after a prolonged marine heatwave.

View Article and Find Full Text PDF

Significant questions remain about how ecosystems that are structured by abiotic stress will be affected by climate change. Warmer temperatures are hypothesized to shift species along abiotic gradients such that distributions track changing environments where physical conditions allow. However, community-scale impacts of extreme warming in heterogeneous landscapes are likely to be more complex.

View Article and Find Full Text PDF

Coastal refugia during the Last Glacial Maximum (~21,000 years ago) have been hypothesized at high latitudes in the North Atlantic, suggesting marine populations persisted through cycles of glaciation and are potentially adapted to local environments. Here, whole-genome sequencing was used to test whether North Atlantic marine coastal populations of the kelp Alaria esculenta survived in the area of southwestern Greenland during the Last Glacial Maximum. We present the first annotated genome for A.

View Article and Find Full Text PDF

Marine heatwaves threaten the persistence of kelp forests globally. However, the observed responses of kelp forests to these events have been highly variable on local scales. Here, we synthesize distribution data from an environmentally diverse region to examine spatial patterns of canopy kelp persistence through an unprecedented marine heatwave.

View Article and Find Full Text PDF

Kelp forests are in decline across much of their range due to place-specific combinations of local and global stressors. Declines in kelp abundance can lead to cascading losses of biodiversity and productivity with far-reaching ecological and socioeconomic consequences. The Salish Sea is a hotspot of kelp diversity where many species of kelp provide critical habitat and food for commercially, ecologically, and culturally important fish and invertebrate species.

View Article and Find Full Text PDF

16S rRNA gene profiling (amplicon sequencing) is a popular technique for understanding host-associated and environmental microbial communities. Most protocols for sequencing amplicon libraries follow a standardized pipeline that can differ slightly depending on laboratory facility and user. Given that the same variable region of the 16S gene is targeted, it is generally accepted that sequencing output from differing protocols are comparable and this assumption underlies our ability to identify universal patterns in microbial dynamics through meta-analyses.

View Article and Find Full Text PDF

The genomic era continues to revolutionize our understanding of the evolution of biodiversity. In phycology, emphasis remains on assembling nuclear and organellar genomes, leaving the full potential of genomic datasets to answer long-standing questions about the evolution of biodiversity largely unexplored. Here, we used whole-genome sequencing (WGS) datasets to survey species diversity in the kelp genus Alaria, compare phylogenetic signals across organellar and nuclear genomes, and specifically test whether phylogenies behave like trees or networks.

View Article and Find Full Text PDF

Physical principles and laws determine the set of possible organismal phenotypes. Constraints arising from development, the environment, and evolutionary history then yield workable, integrated phenotypes. We propose a theoretical and practical framework that considers the role of changing environments.

View Article and Find Full Text PDF

Organellar genomes serve as useful models for genome evolution and contain some of the most widely used phylogenetic markers, but they are poorly characterized in many lineages. Here, we report 20 novel mitochondrial genomes and 16 novel plastid genomes from the brown algae. We focused our efforts on the orders Chordales and Laminariales but also provide the first plastid genomes (plastomes) from Desmarestiales and Sphacelariales, the first mitochondrial genome (mitome) from Ralfsiales and a nearly complete mitome from Sphacelariales.

View Article and Find Full Text PDF
Article Synopsis
  • Large eukaryotes, like seaweeds, host diverse microbial communities (epibiota) on their surfaces that impact their biology significantly.
  • A study of 38 seaweed species revealed that host identity mainly drives variations in these microbial communities, with host morphology also playing a crucial role in epibiota richness.
  • Experimental results showed that bacterial community composition matches patterns observed in natural settings, indicating that habitat complexity in the host influences microbial biodiversity, similar to trends seen in animal communities.
View Article and Find Full Text PDF

Prospects for coral persistence through increasingly frequent and extended heatwaves seem bleak. Coral recovery from bleaching is only known to occur after temperatures return to normal, and mitigation of local stressors does not appear to augment coral survival. Capitalizing on a natural experiment in the equatorial Pacific, we track individual coral colonies at sites spanning a gradient of local anthropogenic disturbance through a tropical heatwave of unprecedented duration.

View Article and Find Full Text PDF

Extreme environments have driven the evolution of some of the most inspiring adaptations in nature. In the intertidal zone of wave-swept shores, organisms face physical forces comparable to hurricanes and must further endure thermal and desiccation stress during low tides, compromising their physiological and biomechanical performance. We examine how these multiple stressors have influenced the evolution of tissue properties during desiccation using eight phylogenetically independent pairs of intertidal and subtidal macrophytes.

View Article and Find Full Text PDF