Malnutrition after stroke may lessen the beneficial effects of rehabilitation on motor recovery through influences on both brain and skeletal muscle. Enriched rehabilitation (ER), a combination of environmental enrichment and forelimb reaching practice, is used preclinically to study recovery of skilled reaching after stroke. However, the chronic food restriction typically used to motivate engagement in reaching practice is a barrier to using ER to investigate interactions between nutritional status and rehabilitation.
View Article and Find Full Text PDFWhite matter degeneration in the central nervous system (CNS) has been correlated with a decline in cognitive function during aging. Ultrastructural examination of the aging human brain shows a loss of myelin, yet little is known about molecular and biochemical changes that lead to myelin degeneration. In this study, we investigate myelination across the lifespan in C57BL/6 mice using electron microscopy and Fourier transform infrared (FTIR) spectroscopic imaging to better understand the relationship between structural and biochemical changes in CNS white matter tracts.
View Article and Find Full Text PDFRepetitive acute intermittent hypoxia (AIH - brief, episodes of low inspired oxygen) elicits spinal motor plasticity, resulting in sustained improvements of respiratory and non-respiratory motor function in both animal models and humans with chronic spinal cord injury (SCI). We previously demonstrated that 7 days of AIH combined with task-specific training improves performance on a skilled locomotor task for at least 3 weeks post-treatment in rats with incomplete SCI. Here we investigated the effect of repetitive AIH administered for 12 wks on a forelimb reach-to-grasp task in a rat model of chronic, incomplete cervical SCI.
View Article and Find Full Text PDFOne of the most promising approaches to improve recovery after spinal cord injury (SCI) is the augmentation of spontaneously occurring plasticity in uninjured neural pathways. Acute intermittent hypoxia (AIH, brief exposures to reduced O2 levels alternating with normal O2 levels) initiates plasticity in respiratory systems and has been shown to improve recovery in respiratory and non-respiratory spinal systems after SCI in experimental animals and humans. Although the mechanism by which AIH elicits its effects after SCI are not well understood, AIH is known to alter protein expression in spinal neurons in uninjured animals.
View Article and Find Full Text PDFTransl Stroke Res
December 2018
Protein-energy malnutrition (PEM) pre-existing at stroke onset is believed to worsen functional outcome, yet the underlying mechanisms are not fully understood. Since brain inflammation is an important modulator of neurological recovery after stroke, we explored the impact of PEM on neuroinflammation in the acute period in relation to stroke-initiated sensori-motor abnormalities. Adult rats were fed a low-protein (LP) or normal protein (NP) diet for 28 days before inducing photothrombotic stroke (St) in the forelimb region of the motor cortex or sham surgery; the diets continued for 3 days after the stroke.
View Article and Find Full Text PDFWhile protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner.
View Article and Find Full Text PDFBackground And Purpose: We assessed the elemental and biochemical effects of rehabilitation after intracerebral hemorrhage, with emphasis on iron-mediated oxidative stress, using a novel multimodal biospectroscopic imaging approach.
Methods: Collagenase-induced striatal hemorrhage was produced in rats that were randomized to enriched rehabilitation or control intervention starting on day 7. Animals were euthanized on day 14 or 21, a period of ongoing cell death.
Imaging energy metabolites as markers of the energy shuttle between glia and neurons following ischemia is an ongoing challenge. Traditional microscopies in combination with histochemistry reveal glycogen accumulation within glia following ischemia, indicating an altered metabolic profile. Although semiquantitative histochemical glycogen analysis is possible, the method suffers from typical confounding factors common to histochemistry, such as variation in reagent penetration and binding.
View Article and Find Full Text PDFStroke is a major global health problem, with the prevalence and economic burden predicted to increase due to aging populations in western society. Following stroke, numerous biochemical alterations occur and damage can spread to nearby tissue. This zone of "at risk" tissue is termed the peri-infarct zone (PIZ).
View Article and Find Full Text PDFGlobal brain ischemia resulting from cardiac arrest and cardiac surgery can lead to permanent brain damage and mental impairment. A clinical hallmark of global brain ischemia is delayed neurodegeneration, particularly within the CA1 subsector of the hippocampus. Unfortunately, the biochemical mechanisms have not been fully elucidated, hindering optimization of current therapies (i.
View Article and Find Full Text PDFJ Synchrotron Radiat
September 2015
High-resolution computed tomography (CT) imaging of a live animal within a lead-lined synchrotron light hutch presents several unique challenges. In order to confirm that the animal is under a stable plane of anaesthesia, several physiological parameters (e.g.
View Article and Find Full Text PDFJ Inorg Biochem
October 2015
In recent years larval stage zebrafish have been emerging as a standard vertebrate model in a number of fields, ranging from developmental biology to pharmacology and toxicology. The tyrosinase inhibitor 1-phenyl-2-thiourea (PTU) is used very widely with larval zebrafish to generate essentially transparent organisms through inhibition of melanogenesis, which has enabled many elegant studies in areas ranging from neurological development to cancer research. Here we show that PTU can have dramatic synergistic and antagonistic effects on the chemical toxicology of different mercury compounds.
View Article and Find Full Text PDFAn intracerebral hemorrhage (ICH) is a devastating stroke that results in high mortality and significant disability in survivors. Unfortunately, the underlying mechanisms of this injury are not yet fully understood. After the primary (mechanical) trauma, secondary degenerative events contribute to ongoing cell death in the peri-hematoma region.
View Article and Find Full Text PDFMesenchymal stem/stromal cells (MSCs) can be isolated from most adult tissues and hold considerable promise for tissue regenerative therapies. Some of the potential advantages that MSCs have over other adult stem cell types include: (1) their relative ease of isolation, culture and expansion; (2) their immunomodulatory properties; (3) they can provide trophic support to injured tissues; (4) they can be transduced by retroviral vectors at a high efficiency; (5) they have an ability to home to sites of inflammation and injury. Collectively these characteristics suggest that MSCs are attractive vehicles for cell and gene therapy applications.
View Article and Find Full Text PDFThe recent introduction of technologies capable of reprogramming human somatic cells into induced pluripotent stem (iPS) cells offers a unique opportunity to study many aspects of neurodegenerative diseases in vitro that could ultimately lead to novel drug development and testing. Here, we report for the first time that human dermal fibroblasts from a patient with relapsing-remitting Multiple Sclerosis (MS) were reprogrammed to pluripotency by retroviral transduction using defined factors (OCT4, SOX2, KLF4, and c-MYC). The MSiPS cell lines resembled human embryonic stem (hES) cell-like colonies in morphology and gene expression and exhibited silencing of the retroviral transgenes after four passages.
View Article and Find Full Text PDFIn the last two decades the field of infrared spectroscopy has seen enormous advances in both instrumentation and the development of bioinformatic methods for spectral analysis, allowing the examination of a large variety of healthy and diseased samples, including biological fluids, isolated cells, whole tissues, and tissue sections. The non-destructive nature of the technique, together with the ability to directly probe biochemical changes without the addition of stains or contrast agents, enables a range of complementary analyses. This review focuses on the application of Fourier transform infrared (FTIR) microspectroscopy to analyse central nervous system tissues, with the aim of understanding the biochemical and structural changes associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathies, multiple sclerosis, as well as brain tumours.
View Article and Find Full Text PDFHuman ESCs (hESCs) are a valuable tool for the study of early human development and represent a source of normal differentiated cells for pharmaceutical and biotechnology applications and ultimately for cell replacement therapies. For all applications, it will be necessary to develop assays to validate the efficacy of hESC differentiation. We explored the capacity for FTIR spectroscopy, a technique that rapidly characterises cellular macromolecular composition, to discriminate mesendoderm or ectoderm committed cells from undifferentiated hESCs.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS). Despite progress in understanding immunogenetic aspects of this disease, the mechanisms involved in lesion formation are unknown. To gain new insights into the neuropathology of MS, we used an innovative integration of Fourier transform infrared (FT-IR) microspectroscopy, bioinformatics, and a synchrotron light source to analyze macromolecular changes in the CNS during the course and prevention of experimental autoimmune encephalomyelitis (EAE), an animal model for MS.
View Article and Find Full Text PDF* Here, a new approach to macromolecular imaging of leaf tissue using a multichannel focal plane array (FPA) infrared detector was compared with the proven method of infrared mapping with a synchrotron source, using transverse sections of leaves from a species of Eucalyptus. * A new histological method was developed, ideally suited to infrared spectroscopic analysis of leaf tissue. Spatial resolution and the signal-to-noise ratio of the FPA imaging and synchrotron mapping methods were compared.
View Article and Find Full Text PDF