Publications by authors named "Sakthivel Kumaravel"

In this study, graphitic carbon nitride (CN) and tungsten trioxide (WO) were successfully incorporated into bromine (Br)-doped graphitic carbon nitride (BCN) using an in-situ hydrothermal method. The photocatalytic efficiency of the resulting WO/Br-doped CN (WBCN) composites for the removal of tetracycline (TC) antibiotics under sunlight irradiation was evaluated. The mass ratio of WO to Br-doped CN (BCN) significantly influenced TC adsorption and photocatalytic degradation, with an optimal ratio of 9:1.

View Article and Find Full Text PDF

For the sustainable advancement of industrial expansion that is environmentally conscious, harmful dyes must be removed from wastewater. Untreated effluents containing colors have the potential to harm the ecosystem and pose major health risks to people, animals, and aquatic life. Here, we have fabricated Ni or Fe modified with BaTiO materials and effectively utilized them for Reactive Red 120 (RR 120) dye degradation under UV-A light.

View Article and Find Full Text PDF

Graphene-based nanocomposites are developing as a new class of materials with several uses. The varied weight percentages of rGO on AgS catalysts were synthesized using a simple hydrothermal process and employed for the decomposition of anionic dye naphthol green B (NGB) under solar light. The reduced graphene oxide-based silver sulfide (rGO/AgS) nanoparticles were then examined using XRD, SEM, EDS, HR-TEM, XPS, UV-DRS, and PL analysis.

View Article and Find Full Text PDF

In recent years, researchers have been actively investigating metal oxide-based materials with narrow bandgaps due to their potential applications toward wastewater treatment and oxygen evolution reactions (OER). In this study, we successfully synthesized g-CN (GCN), FeO and FeO/g-CN (FGCN) using thermal polymerization and hydrothermal methods. We characterized the physicochemical and structural properties of these materials through various analytical techniques including XRD, FT-IR, UV-DRS, XPS, FE-SEM, and HR-TEM analyses, confirming the effective construction of the FGCN composite catalyst.

View Article and Find Full Text PDF

Compositional and structural elucidation of the materials is important to know their properties, chemical stability, and electro-photoactivity. The heterojunction electrocatalyst and photocatalyst activity could open a new window for solving the most urgent environmental and energy problems. Here, for the first time, we have designed and fabricated BiO/bismuth titanates modified with MOF-InS/CdInS materials by a stepwise process.

View Article and Find Full Text PDF

In this study, we utilized calcination and simple impregnation methods to successfully fabricate bare g-CN (GCN) and x% Ag/g-CN (x% AgGCN) composite photocatalysts with various weight percentages (x = 1, 3, 5, and 7 wt.%). The synthesized bare and composite photocatalysts were analyzed to illustrate their phase formation, functional group, morphology, and optical properties utilizing XRD, FT-IR, UV-Vis DRS, PL, FE-SEM, and the EDS.

View Article and Find Full Text PDF

Novel KTO/BiOCl nanostructured photocatalysts with various weight proportions were synthesized using a simple hydrothermal process. The as-prepared nanostructured composite catalysts were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, UV-vis diffused reflectance spectroscopy, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy with high resolution, X-ray photoelectron spectroscopy, and photoluminescence (PL). The photocatalytic activity of prepared catalysts was examined using Rhodamine B (RhB) and Congo Red (CR) as the aimed pollutants.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a renowned plasticizer, and a key component of various plastics, resins, and food packaging materials. However, BPA have been identified as an endocrine disruption compound and cause severe consequences such as infertility, diabetic, obesity, carcinoma, and possess high risk of exposure in aquatic ecosystem. To this, we crafted an ultrasensitive electrochemical sensor based on the manganese sulfide nanoparticles (MnS NPs) catalyzed electrochemical oxidation of BPA, and its eventual application in rapid screening of BPA contamination.

View Article and Find Full Text PDF

Aminopeptidase N (APN/CD13) plays an important role in the growth and metastasis, of tumor, and is a potential biomarker for the post-treatment surveillance of cancer reoccurrence and progression of various malignancies. Thus, we have designed and prepared a convenient and ultrasensitive APN-targeting activity-based ratiometric electrochemical molecular substrate (Ala-AFC) for direct real-time monitoring of APN activity in biosamples. The APN in our experiment was used to hydrolyze the alanine moiety of the Ala-AFC probe and, as a result of this hydrolysis, realize concomitantly a cascade reaction to unmask the electrochemical reporter N-alkylated amino ferrocene (AAF).

View Article and Find Full Text PDF

Herein, a hierarchical structure of flower-like NiCo layered double hydroxides (NiCo LDH) microspheres composed of three-dimensional (3D) ultrathin nanosheets was successfully synthesized via a facile hydrothermal approach. The formation of NiCo LDH was confirmed by various physicochemical studies, and the NiCo LDH-modified glassy carbon electrode was used as an efficient dual-functional electrocatalyst for non-enzymatic glucose and hydrogen peroxide (HO) biosensor. The host matrix of hydrotalcite NiCo LDH exhibits the enhanced electrocatalytic sensing performances with a quick response time (<3 s), wide linear range (50 nM-18.

View Article and Find Full Text PDF

Salmonella contamination is a major concern in food and public health safety, and carrying out episodic monitoring of Salmonella contamination in food and water bodies is essential for safeguarding public health and the economy. Therefore, there is an urgent need to develop an easy-to-operate Salmonella-targeting point-of-care detection platform. To this end, we designed two activity-based latent ratiometric electrochemical molecular substrates, denoted as Sal-CAF and Sal-NBAF, specifically for achieving easy, rapid, and selective profiling of Salmonella esterase (a Salmonella biomarker) under physiological conditions.

View Article and Find Full Text PDF

Nitrogen doped titania over reduced form of graphene oxide (N-TiO₂/rGO) catalysts were synthesized by adopting single step hydrothermal route. All the prepared photocatalysts were thoroughly characterized by using different analytical tools such as XRD, Raman, UV-DRS, FE-SEM and HRTEM. The photocatalytic activities of bare and composite catalysts were evaluated towards the photocatalytic decolourisation/degradation of Methylene blue dye (MB) and Metronidazole antibiotic (MTZ) under visible electromagnetic radiation.

View Article and Find Full Text PDF

Formaldehyde is a reactive carbonyl species (RCS) that is produced naturally in the human body via metabolic and epigenetic biochemical processes, yet in high concentrations is highly toxic to the environment as well as to living organisms. Therefore, we designed two ratiometric electrochemical molecular redox probes, Formaldehyde oxidative latent probe (FOLP) and dihydroxy-formaldehyde oxidative latent probe (HFOLP), for the selective profiling of endogenous formaldehyde. FOLP and HFOLP each underwent the aza-Cope reaction with formaldehyde followed by hydrolysis to eliminate unmask redox reporter N-alkylated aminoferrocene (AAF) to monitor their response current.

View Article and Find Full Text PDF

A peculiar clock-regulated design of FeMn-LDHs (FMH) with specific physiochemical attributes has been developed and used for highly sensitive detection of cysteine (CySH) and dopamine (DA). The FMH nanoparticles were synthesized via a facile hydrothermal approach clocked at various (6 h, 12 h and 18 h) operating periods. Under optimal conditions, FMH were obtained in three unique morphologies such as hexagonal plate like, cubic, and spherical structures corresponding to the clocked periods of 6 h, 12 h, and 18 h, respectively.

View Article and Find Full Text PDF

A ratiometric electrochemical molecular sensing platform for real-time quantification of extracellular hypochlorous acid (HClO) production has been developed based on a latent electrochemical probe aminoferrocene thiocarbamate (AFTC 3). The substrate AFTC consist of a masked redox reporter amino ferrocene (AF 4) linked with a dimethylthiocarbamate trigger via hydroxyl benzyl alcohol. The conceptual idea behind the probe design is based on a specific chemical interaction between HClO and dimethylthiocarbamate, which allows only HClO to unmask the probe to releases AF.

View Article and Find Full Text PDF

Leucine aminopeptidase (LAP) is an essential proteolytic enzyme and potential biomarker for liver malignancy. Overexpression of LAP is directly linked with some fatal physiological and pathological disorders. In this regard, we have designed an activity based electrochemical substrate leucine-benzyl ferrocene carbamate (Leu-FC) for selective profiling of LAP activity in live cells.

View Article and Find Full Text PDF

Value added chemicals, fuels, and fuel additives can be obtained from cheap bio masses such as levulinic acid. Levulinic acid is the dehydration and hydrolysis products of pentoses and hexoses. The present work deals with the synthesis of sulphobenzylated Al-SBA-15, [SO₃H-Bz-Al-SBA-15], characterization by various analytical techniques such as XRD, BET, FT-IR, TGA, DTA, FE-SEM/EDS and HR-TEM/EDX techniques and evaluation of catalytic activity towards esterifi-cation of levulinic acid to ethyl levulinate under mild and non corrosive conditions.

View Article and Find Full Text PDF

The development of an effective technique for detecting antibiotic drugs remains a serious task due to their toxicity to public health. For this purpose, herein, we report an electrochemical detection based on CuS nanosphere decorated reduced graphene oxide (RGO@CuS NC) nanocomposite. A sonochemical-assisted method was adopted to prepare the nanocomposite.

View Article and Find Full Text PDF

In this study, we report the synthesis of NiWO₄/nitrogen doped reduced graphene oxide nano composite by one-pot hydrothermal method. The NiWO₄ nano particles were dispersed uniformly on graphene sheets. The as prepared NiWO₄, NiWO₄/5% rGO and NiWO₄/N-5% rGO composites were analytically characterized by Powder X-ray diffraction (XRD), Raman spectroscopy, Diffuse reflectance spectroscopy (DRS-UV), Scanning electron microscopy (SEM) and N₂ adsorption-desorption isotherm.

View Article and Find Full Text PDF

Drastic increase in green house gases due to fossil fuels usage urges the mankind to look for alternative fuel resources. Biodiesel is one of the alternative fuels which attracted the attention of many researchers. In recent years, bio-diesel drags much attention as an alternative clean fuel.

View Article and Find Full Text PDF