Diabetes mellitus increases oxidative stress due to hyperglycemia, resulting in the degeneration of rotator cuff tissue. Currently, there is no established method to non-invasively assess the extent of this oxidative stress. To address this, we aimed to investigate the relationship between the accumulation of advanced glycation end-products (AGEs), a marker of oxidative stress, and transcutaneous autofluorescence intensity in rotator cuff tissue harvested from diabetic rats.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2019
Rationale: Multicentric carpotarsal osteolysis (MCTO) is a rare hereditary disease caused by mutations in MafB, a negative regulator of osteoclastogenesis.
Patient Concerns: A 20-year-old, Japanese woman with scoliosis visited our institute for treatment. Scoliosis was apparent since she was 12 years old, but she had not sought treatment until the age of 19.
Iron plays essential roles in the central nervous system. However, how the iron level is regulated in brain cells including glia and neurons remains to be fully clarified. In this study, the localizations of hepcidin, ferroportin, and hephaestin, which are known to be involved in iron efflux, were immunohistochemically examined in autopsied human brains.
View Article and Find Full Text PDFBackground: Spontaneous spinal epidural hematoma (SSEH) is a spinal emergency that requires early diagnosis and decompression surgery. Here, we report a case of SSEH that was difficult to differentiate from pigmented villonodular synovitis (PVS) because of combined facet joint destruction and that required gross total resection, a procedure not typically indicated for SSEH.
Case Description: A 58-year-old woman complained of sudden-onset walk disturbance after backache without any traumatic episode.
The entry of blood-borne macromolecular substances into the brain parenchyma from cerebral vessels is blocked by the blood-brain barrier (BBB) function. Accordingly, increased permeability of the vessels induced by insult noted in patients suffering from vascular dementia likely contributes to the cognitive impairment. On the other hand, blood-borne substances can enter extracellular spaces of the brain via endothelial cells at specific sites without the BBB, and can move to brain parenchyma, such as the hippocampus and periventricular areas, adjacent to specific sites, indicating the contribution of increased permeability of vessels in the specific sites to brain function.
View Article and Find Full Text PDFWeekly teriparatide treatment is reported to reduce the incidence of osteoporotic vertebral fractures. However, the effect of weekly teriparatide on cortical bone has not been clarified. This study aimed to examine the effects of weekly teriparatide treatment on bone mass, intracortical structure, and remodeling of the lumbar vertebral cortical shell and its relation to mechanical properties in ovariectomized cynomolgus monkeys.
View Article and Find Full Text PDFThe effect of teriparatide treatment on microdamage accumulation has yet to be examined in animal studies. The purpose of this study was to investigate the effect of once-weekly teriparatide treatment on bone microdamage accumulation and the relationship between microdamage parameters and bone mass, architecture, turnover, and collagen cross-linking in the lumbar vertebral trabecular bone of ovariectomized (OVX) cynomolgus monkeys. Female monkeys were divided into four groups (n = 18-20 per group): (1) SHAM group, (2) OVX group, (3) OVX with 1.
View Article and Find Full Text PDFMicrosc Res Tech
November 2018
To investigate the correlation between mineral formation and enhanced expressions of some proteins using undecalcified frozen bone sections. Histological studies have revealed that some proteins, such as BMP2, BMPR1A, and Connexin 43, are expressed in and around sites of ectopic ossification. However, the relationship between the expressed proteins considered to be associated with the ossification and mineral formation in vivo is not clear.
View Article and Find Full Text PDFIt has been suggested that urate plays a protective role in neurons, while hyperuricemia is correlated with atherosclerosis and cardiovascular disease. However, whether there is a system that directly transports urate into the brain remains to be clarified. In this study, the localization of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1), which are known to be representative reabsorptive urate transporters, was immunohistochemically examined in autopsied human brains.
View Article and Find Full Text PDFTheir aim was to examine whether microvascular leakage of endogenous albumin, a representative marker for blood-brain barrier (BBB) damage, was induced in the periventricular area of diabetic db/db mice because periventricular white matter hyperintensity formation in magnetic resonance images was accelerating in elderly patients with diabetes mellitus. Using light and electron microscopes, and semi-quantitative analysis techniques, immunoreactivity of endogenous albumin, indicating vascular permeability, was examined in the periventricular area and spinal cord of db/db mice and db/+m control mice. Greater immunoreactivity of albumin was observed in the vessel wall of the periventricular area of db/db mice than in controls.
View Article and Find Full Text PDFHigh fructose intake is known to be associated with increased plasma triglyceride concentration, impaired glucose tolerance, insulin resistance, and high blood pressure. In addition, excess fructose intake is also thought to be a risk factor for dementia. Previous immunohistochemical studies have shown the presence of glucose transporter 5 (GLUT5), a major transporter of fructose, in the epithelial cells of the choroid plexus and ependymal cells in the brains of humans, rats, and mice, while GLUT2, a minor transporter of fructose, was localized in the ependymal cells of rat brain.
View Article and Find Full Text PDFBrain Tumor Pathol
April 2016
Blood-borne substances can invade into the extracellular spaces of the brain via endothelial cells in sites without the blood-brain barrier (BBB), and can travel through the interstitial fluid (ISF) of the brain parenchyma adjacent to non-BBB sites. It has been shown that cerebrospinal fluid (CSF) drains directly into the blood via the arachnoid villi and also into lymph nodes via the subarachnoid spaces of the brain, while ISF drains into the cervical lymph nodes through perivascular drainage pathways. In addition, the glymphatic pathway of fluids, characterized by para-arterial pathways, aquaporin4-dependent passage through astroglial cytoplasm, interstitial spaces, and paravenous routes, has been established.
View Article and Find Full Text PDFNew findings on flow or drainage pathways of brain interstitial fluid and cerebrospinal fluid have been made. The interstitial fluid flow has an effect on the passage of blood-borne substances in the brain parenchyma, especially in areas near blood-brain barrier (BBB)-free regions. Actually, blood-borne substances can be transferred in areas with intact BBB function, such as the hippocampus, the corpus callosum, periventricular areas, and medial portions of the amygdala, presumably through leaky vessels in the subfornical organs or the choroid plexus.
View Article and Find Full Text PDFA large number of previous reports have focused on the transport of amyloid-β peptides through cerebral endothelial cells via the blood-brain barrier, while fewer reports have mentioned the transport through the choroid plexus epithelium via the blood-cerebrospinal fluid barrier. Concrete roles of these two pathways remain to be clarified. In this study, we immunohistochemically examined the expression of transporters/receptors that are supposed to be related to the clearance of amyloid-β peptides in the choroid plexus epithelium, the ventricular ependymal cells and the brain microvessels, using seven autopsied human brains.
View Article and Find Full Text PDF