Publications by authors named "Nozomu Nishi"

Modification of the domain architecture of galectins has been attempted to analyze their biological functions and to develop medical applications. Several types of galectin-1 repeat mutants were previously reported but, however, it was not clear whether the native structure of the wild type was retained. In this study, we determined the crystal structure of a galectin-1 tandem-repeat mutant with a short linker peptide, and compared the unfolding profiles of the wild type and mutant by chemical denaturation.

View Article and Find Full Text PDF

The galectin family is a representative soluble lectin group, which is responsible for the modulation of various cell functions. Although the carbohydrate-binding specificity of galectins has been well-studied, the relationship between protein structure and specificity remains to be elucidated. We previously reported the characteristics of a Xenopus laevis skin galectin, xgalectin-Va, which had diverged from galectin-1.

View Article and Find Full Text PDF

Glucose metabolism produces lactate and hydrogen ions in an anaerobic environment. Cerebral ischemia or hypoxia is believed to become progressively lactacidemic. Monocarboxylate transporters (MCTs) in endothelial cells are essential for the transport of lactate from the blood into the brain.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is now recognized as one of the risk factors for Alzheimer's disease (AD), and the disease-modifying effects of anti-diabetic drugs on AD have recently been attracting great attention. Sodium/glucose cotransporter 2 (SGLT2) inhibitors are a new class of anti-diabetic drugs targeting the SGLT2/solute carrier family 5 member 2 (SLC5A2) protein, which is known to localize exclusively in the brush border membrane of early proximal tubules in the kidney. However, recent data suggest that it is also expressed in other tissues.

View Article and Find Full Text PDF

The galectins are a family of β-galactoside-specific animal lectins, and have attracted much attention as novel regulators of the immune system. Galectin-10 is well-expressed in eosinophils, and spontaneously forms Charcot-Leyden crystals (CLCs), during prolonged eosinophilic inflammatory reactions, which are frequently observed in eosinophilic diseases. Although biochemical and structural characterizations of galectin-10 have been done, its biological role and molecular mechanism are still unclear, and few X-ray structures of galectin-10 in complex with monosaccharides/oligosaccharides have been reported.

View Article and Find Full Text PDF

Galectin-9 is the most potent inducer of cell death in lymphomas and other malignant cell types among the members of the galectin family. We investigated the mechanism of galectin-9-induced cell death in PC-3 prostate cancer cells in comparison with in Jurkat T cells. Galectin-9 induced apoptotic cell death in Jurkat cells, as typically revealed by DNA ladder formation.

View Article and Find Full Text PDF

Basic fibroblast growth factor 2 (bFGF) accelerates bone formation during fracture healing. Because the efficacy of bFGF decreases rapidly following its diffusion from fracture sites, however, repeated dosing is required to ensure a sustained therapeutic effect. We previously developed a fusion protein comprising bFGF, a polycystic kidney disease domain (PKD; s2b), and collagen-binding domain (CBD; s3) sourced from the class II collagenase, ColH, and reported that the combination of this fusion protein with a collagen-like peptide, poly(Pro-Hyp-Gly), induced mesenchymal cell proliferation and callus formation at fracture sites.

View Article and Find Full Text PDF

We previously reported that galectin-9 (Gal-9), an immunomodulatory animal lectin, could bind to insoluble collagen preparations and exerted direct cytocidal effects on immune cells. In the present study, we found that mature insoluble elastin is capable of binding Gal-9 and other members of the human galectin family. Lectin blot analysis of a series of commercial water-soluble elastin preparations, PES-(A) ~ PES-(E), revealed that only PES-(E) contained substances recognized by Gal-9.

View Article and Find Full Text PDF

Galectin-9 (G9) is a tandem-repeat type β-galactoside-specific animal lectin having N-terminal and C-terminal carbohydrate recognition domains (N-CRD and C-CRD, respectively) joined by a linker peptide that is involved in the immune system. G9 is divalent in glycan binding, and structural information about the spatial arrangement of the two CRDs is very important for elucidating its biological functions. As G9 is protease sensitive due to the long linker, the protease-resistant mutant form of G9 (G9Null) was developed by modification of the linker peptide, while retaining its biological functions.

View Article and Find Full Text PDF

Study Design: An experimental study.

Objective: To evaluate the effectiveness of freeze-dried bone allograft (FDBA) with basic fibroblast growth factor (bFGF) fused with the polycystic kidney disease domain (PKD) and the collagen-binding domain (CBD) of Clostridium histolyticum collagenase, for the acceleration of lumbar posterolateral fusion in rats.

Summary Of Background Data: Reports indicate bFGF is an effective growth factor with osteogenic potential for promoting bone regeneration, although its efficiency decreases rapidly following its diffusion in body fluid from the host site.

View Article and Find Full Text PDF

Their aim was to examine whether microvascular leakage of endogenous albumin, a representative marker for blood-brain barrier (BBB) damage, was induced in the periventricular area of diabetic db/db mice because periventricular white matter hyperintensity formation in magnetic resonance images was accelerating in elderly patients with diabetes mellitus. Using light and electron microscopes, and semi-quantitative analysis techniques, immunoreactivity of endogenous albumin, indicating vascular permeability, was examined in the periventricular area and spinal cord of db/db mice and db/+m control mice. Greater immunoreactivity of albumin was observed in the vessel wall of the periventricular area of db/db mice than in controls.

View Article and Find Full Text PDF

We previously showed that galectin-9 suppresses degranulation of mast cells through protein-glycan interaction with IgE. To elucidate the mechanism of the interaction in detail, we focused on identification and structural analysis of IgE glycans responsible for the galectin-9-induced suppression using mouse monoclonal IgE (TIB-141). TIB-141 in combination with the antigen induced degranulation of RBL-2H3 cells, which was almost completely inhibited by human and mouse galectin-9.

View Article and Find Full Text PDF

Oncogenic mutation of KRAS (Kirsten rat sarcoma viral oncogene homolog) in colorectal cancer (CRC) confers resistance to both chemotherapy and EGFR (epidermal growth factor receptor)-targeted therapy. We uncovered that KRAS mutant (KRAS(mut)) CRC is uniquely sensitive to treatment with recombinant LGALS9/Galectin-9 (rLGALS9), a recently established regulator of epithelial polarity. Upon treatment of CRC cells, rLGALS9 rapidly internalizes via early- and late-endosomes and accumulates in the lysosomal compartment.

View Article and Find Full Text PDF

Xenopus laevis (African clawed frog) has two types of proto-type galectins that are similar to mammalian galectin-1 in amino acid sequence. One type, comprising xgalectin-Ia and -Ib, is regarded as being equivalent to galectin-1, and the other type, comprising xgalectin-Va and -Vb, is expected to be a unique galectin subgroup. The latter is considerably abundant in frog skin; however, its biological function remains unclear.

View Article and Find Full Text PDF

Recombinant basic fibroblast growth factor (bFGF) is a potent mitogen for mesenchymal cells that accelerates bone union and repair when applied locally at defect sites. However, because bFGF diffuses rapidly from bone defect sites, repeated dosing is required for sustained therapeutic effect. We previously fused the collagen-binding domain (CBD) and polycystic kidney disease (PKD) domain of Clostridium histolyticum class II collagenase (ColH) to bFGF and demonstrated that the fusion protein markedly enhances bone formation when loaded onto collagen materials used for grafting.

View Article and Find Full Text PDF
Article Synopsis
  • Biologics targeting TNF family receptors can be effective for treating immune diseases, with antibodies to 4-1BB (CD137) currently undergoing clinical trials for both cancer and autoimmune conditions.
  • Recent research indicates that the action of agonist anti-4-1BB, which helps reduce autoimmune and allergic inflammation, relies heavily on Galectin-9 (Gal-9), a protein that binds directly to 4-1BB.
  • Gal-9 enhances 4-1BB’s function by promoting its aggregation and signaling in various immune cells, and its interaction is also conserved in humans, suggesting potential for targeted clinical therapies involving 4-1BB and similar proteins.
View Article and Find Full Text PDF

Bone allografts are commonly used for the repair of critical-size bone defects. However, the loss of cellular activity in processed grafts markedly reduces their healing potential compared with autografts. To overcome this obstacle, we developed a healing system for critical-size bone defects that consists of overlaying an implanted bone graft with a collagen sheet (CS) loaded with basic fibroblast growth factor (bFGF) fused to the collagen-binding domain derived from a Clostridium histolyticum collagenase (CB-bFGF).

View Article and Find Full Text PDF

Background: There is a continuous demand for new immunosuppressive agents for organ transplantation. Galectin-9, a member of the galactoside-binding animal lectin family, has been shown to suppress pathogenic T-cell responses in autoimmune disease models and experimental allograft transplantation. In this study, an attempt has been made to develop new collagen matrices, which can cause local, contact-dependent immune suppression, using galectin-9 and collagen-binding galectin-9 fusion proteins as active ingredients.

View Article and Find Full Text PDF

Growth factor delivered with implantable biomaterials has been used to both accelerate and ensure healing of open fractures in human patients. However, a major limitation of implantable biomaterials is the requirement for open surgical placement. Here, we developed an injectable collagen material-based bone formation system consisting of injectable collagen powder with fibril morphology and collagen triple helix conformation, and basic fibroblast growth factor (bFGF) fused to the collagen-binding domain (CBD) of Clostridium histolyticum collagenase.

View Article and Find Full Text PDF

Basic fibroblast growth factor 2 (bFGF) is a potent mitogen for mesenchymal cells, and the local application of recombinant bFGF accelerates bone union and defect repair. However, repeated dosing is required for sustained therapeutic effect as the efficacy of bFGF decreases rapidly following its diffusion from bone defect sites. Here, we attempted to develop a collagen-based bone formation system using a fusion protein (collagen binding-bFGF, CB-bFGF) consisting of bFGF and the collagen-binding domain (CBD) of Clostridium histolyticum collagenase.

View Article and Find Full Text PDF

We previously developed a stable form of galectin-9, an immunomodulatory animal lectin with a truncated linker peptide (G9Null), to overcome the protease sensitivity of wild-type galectin-9. G9Null is highly resistant to proteolysis, while the modification marginally improved the low solubility of the wild-type protein. To increase its solubility, we further modified the remaining linker region of G9Null.

View Article and Find Full Text PDF

Galectin-9 is a lectin, which has various biological functions such as T-cell differentiation and apoptosis. Multivalency of carbohydrate binding is required for galectin-9 to function. Although galectin-1 (a proto-type galectin) forms an oligomer to obtain its multivalency, galectin-9 (a tandem-repeat-type one) has two carbohydrate recognition domains (CRD) in one polypeptide.

View Article and Find Full Text PDF