Proc Natl Acad Sci U S A
November 2024
One driver of the high failure rates of clinical trials for therapeutic cancer vaccines is likely the inability to sufficiently engage conventional dendritic cells (cDCs), the antigen-presenting cell (APC) subset that is specialized in priming antitumor T cells. Here, we demonstrate that, relative to vaccination with an injectable mesoporous silica rod (MPS) vaccine alone (Vax), combining MPS vaccines with CD122-biased IL-2/anti-IL-2 antibody complexes (IL-2cx) drives ~3-fold expansion of cDCs at the vaccination sites, vaccine-draining lymph nodes, and spleens of treated mice. Furthermore, relative to Vax alone, Vax+IL-2cx led to a ~3-fold increase in the numbers of CD8 T cells and ~15-fold increase in the numbers of NK cells at the vaccination site.
View Article and Find Full Text PDFNat Biomed Eng
October 2024
Following immunization, lymph nodes dynamically expand and contract. The mechanical and cellular changes enabling the early-stage expansion of lymph nodes have been characterized, yet the durability of such responses and their implications for adaptive immunity and vaccine efficacy are unknown. Here, by leveraging high-frequency ultrasound imaging of the lymph nodes of mice, we report more potent and persistent lymph-node expansion for animals immunized with a mesoporous silica vaccine incorporating a model antigen than for animals given bolus immunization or standard vaccine formulations such as alum, and that durable and robust lymph-node expansion was associated with vaccine efficacy and adaptive immunity for 100 days post-vaccination in a mouse model of melanoma.
View Article and Find Full Text PDFThe success of immunotherapy with immune checkpoint inhibitors (ICIs) in a subset of individuals has been very exciting. However, in many cancers, responses to current ICIs are modest and are seen only in a small subsets of patients. Herein, a widely applicable approach that increases the benefit of ICIs is reported.
View Article and Find Full Text PDFLeukocyte egress from peripheral tissues to draining lymph nodes is not only critical for immune surveillance and initiation but also contributes to the resolution of peripheral tissue responses. While a variety of methods are used to quantify leukocyte egress from non-lymphoid, peripheral tissues, the cellular and molecular mechanisms that govern context-dependent egress remain poorly understood. Here, we describe the use of in situ photoconversion for quantitative analysis of leukocyte egress from murine skin and tumors.
View Article and Find Full Text PDFFront Immunol
October 2019
In response to pathological challenge, the host generates rapid, protective adaptive immune responses while simultaneously maintaining tolerance to self and limiting immune pathology. Peripheral tissues (e.g.
View Article and Find Full Text PDFMechanisms of immune suppression in peripheral tissues counteract protective immunity to prevent immunopathology and are coopted by tumors for immune evasion. While lymphatic vessels facilitate T cell priming, they also exert immune suppressive effects in lymph nodes at steady-state. Therefore, we hypothesized that peripheral lymphatic vessels acquire suppressive mechanisms to limit local effector CD8 T cell accumulation in murine skin.
View Article and Find Full Text PDFLymphatic vessels lie at the interface between peripheral sites of pathogen entry, adaptive immunity, and the systemic host. Though the paradigm is that their open structure allows for passive flow of infectious particles from peripheral tissues to lymphoid organs, virus applied to skin by scarification does not spread to draining lymph nodes. Using cutaneous infection by scarification, we analyzed the effect of viral infection on lymphatic transport and evaluated its role at the host-pathogen interface.
View Article and Find Full Text PDF