Publications by authors named "Ryan Hossaini"

Emissions of chloroform (CHCl), a short-lived halogenated substance not currently controlled under the Montreal Protocol on Substances that Deplete the Ozone Layer, are offsetting some of the achievements of the Montreal Protocol. In this study, emissions of CHCl from China were derived by atmospheric measurement-based "top-down" inverse modeling and a sector-based "bottom-up" inventory method. Top-down CHCl emissions grew from 78 (72-83) Gg yr in 2011 to a maximum of 193 (178-204) Gg yr in 2017, followed by a decrease to 147 (138-154) Gg yr in 2018, after which emissions remained relatively constant through 2020.

View Article and Find Full Text PDF
Article Synopsis
  • Ocean-emitted short-lived halogens are common in the atmosphere, and their natural emissions have increased due to human activities since pre-industrial times, along with added human-made halocarbons.
  • These halogens have a significant indirect cooling effect on Earth's radiative balance, calculated at about -0.13 watts per square meter, influenced primarily by their effects on ozone and moderated by methane and aerosols.
  • This cooling effect has risen by 61% since 1750 and is expected to change by 18-31% by 2100, highlighting the need to include short-lived halogens in climate models for better predictions of the climate system.
View Article and Find Full Text PDF

CH is the most abundant reactive greenhouse gas and a complete understanding of its atmospheric fate is needed to formulate mitigation policies. Current chemistry-climate models tend to underestimate the lifetime of CH, suggesting uncertainties in its sources and sinks. Reactive halogens substantially perturb the budget of tropospheric OH, the main CH loss.

View Article and Find Full Text PDF

With the successful implementation of the Montreal Protocol on Substances that Deplete the Ozone Layer, the atmospheric abundance of ozone-depleting substances continues to decrease slowly and the Antarctic ozone hole is showing signs of recovery. However, growing emissions of unregulated short-lived anthropogenic chlorocarbons are offsetting some of these gains. Here, we report an increase in emissions from China of the industrially produced chlorocarbon, dichloromethane (CHCl).

View Article and Find Full Text PDF
Article Synopsis
  • Very short-lived substances (VSLS), such as dichloromethane and chloroform, are significant sources of chlorine in the stratosphere, contributing to ozone depletion.
  • The estimated stratospheric chlorine levels from VSLS rose from 69 ppt in 2000 to 111 ppt in 2017, primarily due to source gas injection.
  • The contribution of VSLS to total stratospheric chlorine has increased from ~2% to ~3.4% during the same period, indicating their growing role as other long-lived chlorinated compounds decline.
View Article and Find Full Text PDF

As a result of the 1987 Montreal Protocol and its amendments, the atmospheric loading of anthropogenic ozone-depleting substances is decreasing. Accordingly, the stratospheric ozone layer is expected to recover. However, short data records and atmospheric variability confound the search for early signs of recovery, and climate change is masking ozone recovery from ozone-depleting substances in some regions and will increasingly affect the extent of recovery.

View Article and Find Full Text PDF

It is well established that anthropogenic chlorine-containing chemicals contribute to ozone layer depletion. The successful implementation of the Montreal Protocol has led to reductions in the atmospheric concentration of many ozone-depleting gases, such as chlorofluorocarbons. As a consequence, stratospheric chlorine levels are declining and ozone is projected to return to levels observed pre-1980 later this century.

View Article and Find Full Text PDF

Over the last two decades it has emerged that measured hydroxyl radical levels in the upper troposphere are often underestimated by models, leading to the assertion that there are missing sources. Here we report laboratory studies of the kinetics and products of the reaction between CH3O2 and BrO radicals that shows that this could be an important new source of hydroxyl radicals:BrO + CH3O2 → products (1). The temperature dependent value in Arrhenius form of k(T) is k1 = (2.

View Article and Find Full Text PDF