Selective hydrogenolysis of biomass-derived furanic compounds is a promising approach for synthesizing aliphatic polyols by opening the furan ring. However, there remains a significant need for highly efficient catalysts that selectively target the Csp-O bond in the furan ring, as well as for a deeper understanding of the fundamental atomistic mechanisms behind these reactions. In this study, we present the use of Pt-Fe bimetallic catalysts supported on layered double hydroxides [PtFe /LDH] for the hydrogenolysis of furanic compounds into aliphatic alcohols, achieving over 90% selectivity toward diols and triols.
View Article and Find Full Text PDFCoupling with the nitrate electroreduction reaction (NitRR), the electrosynthesis of cyclohexanone oxime (CHO, the vital feedstock in the nylon-6 industry) from cyclohexanone provides a promising alternative to the traditional energy consumption process. However, it still suffers from low efficiency because selective production of *NHOH intermediate from NitRR under large current densities is challenging. We here report a CuMoO/nitrogen-doped carbon (NC) electrocatalyst with high-density Cu-Mo dual sites for NitRR to selectively produce and stabilize *NHOH, with the subsequent cyclohexanone oximation achieving the highest CHO Faradaic efficiency of 94.
View Article and Find Full Text PDFFor CO electroreduction (COER) to C compounds, it is generally accepted that the formation of ethylene and ethanol shares the same intermediate, *HCCOH. The majority of studies have achieved high faradaic efficiency (FE) towards ethylene, but faced challenges to get high ethanol FE. Herein, we present an alkyl sulfonate surfactant (, sodium dodecyl sulfonate, SDS) mediated COER to a C product over an generated Cu catalyst (Cu@SDS) from SDS-modified Cu(OH).
View Article and Find Full Text PDFThe photocatalytic transformation of carbon dioxide (CO) into valuable chemicals is a challenging process that requires effective and selective catalysts. However, most polymer-based photocatalysts with electron donor-acceptor (D-A) structures are synthesized with a fixed D-A ratio by using expensive monomers. Herein, we report a simple strategy to prepare polyarene oxides (PAOs) with quinone structural units via oxidation treatment of polyarene (PA).
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2023
Ag single-atom catalysts (SACs) have great potential in selective electrocatalysis of the CO reduction reaction (CORR) to CO, while it is still a challenge to achieve high current density and high atom efficiency simultaneously. Here, we present a new and simple adsorption-reduction method to prepare Ag SACs supported on CeO (Ag/CeO). It is found that Ag single atoms are anchored on CeO through strong metal-support interaction (SMSI), and each Ag atom is accompanied with three interfacial oxygen vacancies.
View Article and Find Full Text PDFElectrocatalytic CO reduction reaction (CO RR) offers a promising strategy to lower CO emission while producing value-added chemicals. A great challenge facing CO RR is how to improve energy efficiency by reducing overpotentials. Herein, partially nitrided Ni nanoclusters (NiN ) immobilized on N-doped carbon nanotubes (NCNT) for CO RR are reported, which achieves the lowest onset overpotential of 16 mV for CO -to-CO and the highest cathode energy efficiency of 86.
View Article and Find Full Text PDFCopper-coordinated catalysts are reported to be effective for electrocatalytic CO reduction reaction (CO RR) to C products but suffer from low selectivity. Herein a strategy was developed to tune the d-band structure of Cu via coordinating with aromatic ligands to form Cu-based conjugated polymers for CO RR to C chemicals. The catalysts derived from copper chloride coordinating with tetraminobenzoquinone (TABQ) and with 1,2,4,5-benzenetetramine possessed high-density and compact Cu single-atom sites and displayed high activity for CO RR to C products.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2022
Developing high-performance catalysts for water splitting via renewable electricity is of great significance for the clean production of hydrogen. This work reports rational design and controllable fabrication of metal oxide hybrid catalyst CoNiFeO·2CuO with unique biphasic microstructures for electrochemical water splitting. Benefited from the presence of CuO nanoparticles as the second phase, more defects and active sites were formed around the interfaces of CoNiFeO and CuO, which led to excellent performances for electrocatalytic water splitting.
View Article and Find Full Text PDF