Nine nonemissive Ru(II) complexes have been designed for synergistic NIR-II (1064 nm) photodynamic, photothermal, sonodynamic, and sonothermal therapy targeting cisplatin-resistant nonsmall cell lung cancer. Their quantum yields of singlet oxygen and superoxide anions are significantly elevated under low-power NIR-II laser irradiation or ultrasound treatment. The selected complex completely eradicated drug-resistant lung cancer tumors in all tested mice when treated simultaneously with NIR-II laser and ultrasound at a minimal drug dosage in vivo and was promptly eliminated from the organism.
View Article and Find Full Text PDFA new series of dinuclear Ru(II) complexes with a novel bridging ligand were developed for the treatment of cisplatin-resistant non-small-cell lung cancer via a synergistic photodynamic, photothermal, and sonodynamic therapy mechanism. Comprehensive experimental and theoretical studies investigated their photophysical and photochemical properties along with the influence of ancillary ligands. The complexes exhibit significant two-photon absorption at the IR region, facilitating ROS generation through both type I and II mechanisms under IR laser and ultrasound exposure.
View Article and Find Full Text PDFA series of dinuclear Ir(III) complexes have been constructed for enhanced photodynamic and photothermal therapy (PDT and PTT) for cisplatin-resistant non-small-cell lung cancer. They enter cells via caveolar endocytosis, target mitochondria but not nuclear, generate both singlet oxygen and superoxide anion, and release heat when exposed to infrared (IR) irradiation, thus inducing reactive oxygen species (ROS)-associated cell disruption and thermal ablation. The IR-generated ROS can further activate caspases, triggering apoptosis.
View Article and Find Full Text PDFHIV-1 reverse transcriptase (RT) inhibitors play a crucial role in the treatment of HIV by preventing the activity of the enzyme responsible for the replication of the virus. The HIV-1 Tat protein binds to transactivation response (TAR) RNA and recruits host factors to stimulate HIV-1 transcription. We have created a small library consisting of 4 × 6 polypyridyl Ru(II) complexes that selectively bind to TAR RNA, with targeting groups specific to HIV-1 TAR RNA.
View Article and Find Full Text PDFA planar conjugated ligand functionalized with bithiophene and its Ru(II), Os(II), and Ir(III) complexes have been constructed as single-molecule platform for synergistic photodynamic, photothermal, and chemotherapy. The complexes have significant two-photon absorption at 808 nm and remarkable singlet oxygen and superoxide anion production in aqueous solution and cells when exposed to 808 nm infrared irradiation. The most potent Ru(II) complex Ru7 enters tumor cells via the rare macropinocytosis, locates in both nuclei and mitochondria, and regulates DNA-related chemotherapeutic mechanisms intranuclearly including DNA topoisomerase and RNA polymerase inhibition and their synergistic effects with photoactivated apoptosis, ferroptosis and DNA cleavage.
View Article and Find Full Text PDFChem Commun (Camb)
November 2022
Four dinuclear osmium complexes have been constructed for antitumor phototherapy. The most potent Os4 has extremely high photothermal conversion capability under irradiation of an 808 nm low-power laser, targets mitochondria in human melanoma cells without nucleus affinity, and acts as an antitumor photothermal therapy agent and .
View Article and Find Full Text PDFBackground: Mutations in DNA mismatch repair (MMR) genes associated with thyroid carcinoma (TC) have rarely been reported, especially in East Asian populations.
Methods: We examined tumor tissue from a cohort of 241 patients diagnosed with TC between 2008 and 2020. MMR proteins were detected using tissue microarray-based immunohistochemistry in order to identify MMR-protein-deficient (MMR-D) and MMR-protein-intact (MMR-I) tumors.