Publications by authors named "Rui F Simoes"

Hypothalamic inflammation underlies diet-induced obesity and diabetes in rodent models. While diet normalization largely allows for recovery from metabolic impairment, it remains unknown whether long-term hypothalamic inflammation induced by obesogenic diets is a reversible process. In this study, we aimed at determining sex specificity of hypothalamic neuroinflammation and gliosis in mice fed a fat- and sugar-rich diet, and their reversibility upon diet normalization.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS.

View Article and Find Full Text PDF

Background And Aims: Receptor-interacting protein kinase 3 (RIPK3) mediates NAFLD progression, but its metabolic function is unclear. Here, we aimed to investigate the role of RIPK3 in modulating mitochondria function, coupled with lipid droplet (LD) architecture in NAFLD.

Approach And Results: Functional studies evaluating mitochondria and LD biology were performed in wild-type (WT) and Ripk3-/- mice fed a choline-deficient, amino acid-defined (CDAA) diet for 32 and 66 weeks and in CRISPR-Cas9 Ripk3 -null fat-loaded immortalized hepatocytes.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a health concern affecting 24% of the population worldwide. Although the pathophysiologic mechanisms underlying disease are not fully clarified, mitochondrial dysfunction and oxidative stress are key players in disease progression. Consequently, efforts to develop more efficient pharmacologic strategies targeting mitochondria for NAFLD prevention/treatment are underway.

View Article and Find Full Text PDF

With the increase in life expectancy and consequent aging of the world's population, the prevalence of many neurodegenerative diseases is increasing, without concomitant improvement in diagnostics and therapeutics. These diseases share neuropathological hallmarks, including mitochondrial dysfunction. In fact, as mitochondrial alterations appear prior to neuronal cell death at an early phase of a disease's onset, the study and modulation of mitochondrial alterations have emerged as promising strategies to predict and prevent neurotoxicity and neuronal cell death before the onset of cell viability alterations.

View Article and Find Full Text PDF

Mitochondria are key organelles involved in cellular survival, differentiation, and death induction. In this regard, mitochondrial morphology and/or function alterations are involved in stress-induced adaptive pathways, priming mitochondria for mitophagy or apoptosis induction. We have previously shown that the mitochondriotropic antioxidant AntiOxCIN (100 μM; 48 h) presented significant cytoprotective effect without affecting the viability of human hepatoma-derived (HepG2) cells.

View Article and Find Full Text PDF

Alterations in mitochondrial dynamics, including their intracellular trafficking, are common early manifestations of neuronal degeneration. However, current methodologies used to study mitochondrial trafficking events rely on parameters that are primarily altered in later stages of neurodegeneration. Our objective was to establish a reliable applied statistical analysis to detect early alterations in neuronal mitochondrial trafficking.

View Article and Find Full Text PDF

The progression of non-alcoholic fatty liver (NAFL) into non-alcoholic steatohepatitis implicates multiple mechanisms, chief of which is mitochondrial dysfunction. However, the sequence of events underlying mitochondrial failure are still poorly clarified. In this work, male C57BL/6J mice were fed with a high-fat plus high-sucrose diet for 16, 20, 22, and 24 weeks to induce NAFL.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a neurodegenerative disorder affecting more than 10 million people worldwide. Currently, PD has no cure and no early diagnostics methods exist. Mitochondrial dysfunction is presented in the early stages of PD, and it is considered an important pathophysiology component.

View Article and Find Full Text PDF

Non-alcoholic steatohepatitis (NASH), one of the deleterious stages of non-alcoholic fatty liver disease, remains a significant cause of liver-related morbidity and mortality worldwide. In the current work, we used an exploratory data analysis to investigate time-dependent cellular and mitochondrial effects of different supra-physiological fatty acids (FA) overload strategies, in the presence or absence of fructose (F), on human hepatoma-derived HepG2 cells. We measured intracellular neutral lipid content and reactive oxygen species (ROS) levels, mitochondrial respiration and morphology, and caspases activity and cell death.

View Article and Find Full Text PDF

Materials And Methods: Bark extracts of these plants (1 and 25 g/mL) were added 3 hours before coincubating H9c2 cardiomyoblasts with Dox (0.5 and 1 M) for 24 hours more. We measured cell mass and metabolic viability, mitochondrial transmembrane potential, superoxide anion content, and activity-like of caspase-3 and caspase-9 following treatment with the extracts and/or Dox.

View Article and Find Full Text PDF

Since most models used to study neuronal dysfunction display disadvantages and ethical concerns, a fast and reproducible in vitro model to study mitochondria-related neurodegeneration is required. Here, we optimized and characterized a 3-day retinoic acid-based protocol to differentiate the SH-SY5Y cell line into a neuronal-like phenotype and investigated alterations in mitochondrial physiology and distribution. Differentiation was associated with p21-linked cell cycle arrest and an increase in cell mass and area, possibly associated with the development of neurite-like extensions.

View Article and Find Full Text PDF

The appearance of alpha-synuclein-positive inclusion bodies (Lewy bodies) and the loss of catecholaminergic neurons are the primary pathological hallmarks of Parkinson's disease (PD). However, the dysfunction of mitochondria has long been recognized as a key component in the progression of the disease. Dysfunctional mitochondria can in turn lead to dysregulation of calcium homeostasis and, especially in dopaminergic neurons, raised mean intracellular calcium concentration.

View Article and Find Full Text PDF

Doxorubicin (DOX), a potent and broad-spectrum antineoplastic agent, causes an irreversible, cumulative and dose-dependent cardiomyopathy that ultimately leads to congestive heart failure. The mechanisms responsible for DOX cardiotoxicity remain poorly understood, but seem to involve mitochondrial dysfunction on several levels. Epigenetics may explain a portion of this effect.

View Article and Find Full Text PDF

Doxorubicin (DOX) is one of the most widely used anti-neoplastic agents. However, treatment with DOX is associated with cumulative cardiotoxicity inducing progressive cardiomyocyte death. Sirtuin 3 (Sirt3), a mitochondrial deacetylase, regulates the activity of proteins involved in apoptosis, autophagy and metabolism.

View Article and Find Full Text PDF

This investigation has explored the properties of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BDTA) derivatives with regard to their being prospective inhibitors of hexokinase II (HKII). A pluripotent embryonic carcinoma cell line P19 (ECC), was used as the biological target for newly generated potential inhibitors of HKII. The results obtained from Virtual High-Throughput Screening (VHTS), molecular modeling and biological activity studies showed BDTA to be a promising leading structure with a good binding score and simplest functionalization.

View Article and Find Full Text PDF

Background: Cardiovascular diseases (CVDs) are one of the main factors responsible for human morbidity and mortality. Since mitochondria play a critical role in the regulation of cardiac tissue homeostasis, this organelle is a critical target for the protective effects of several pharmaceuticals. Although specific mitochondria-targeted antioxidants and some pharmacological agents are described as potential cardioprotective agents, there are still a few effective mitochondrial therapies for the treatment of CVDs.

View Article and Find Full Text PDF

Background: The employment of dietary strategies such as ketogenic diets, which force cells to alter their energy source, has shown efficacy in the treatment of several diseases. Ketogenic diets are composed of high fat, moderate protein and low carbohydrates, which favour mitochondrial respiration rather than glycolysis for energy metabolism.

Design: This review focuses on how oncological, neurological and mitochondrial disorders have been targeted by ketogenic diets, their metabolic effects, and the possible mechanisms of action on mitochondrial energy homeostasis.

View Article and Find Full Text PDF