Publications by authors named "Rotti Srinivasamurthy Swathi"

Global optimization is an effective approach to study the geometries and energetics of atomic or molecular confinement within nanostructures. The high computational cost associated with modeling such complex chemical systems calls for the adoption of stochastic global optimization techniques. Herein, we employ a swarm intelligence-based technique, namely, particle swarm optimization (PSO), to study the confinement of water clusters in monolayer and multilayer graphynes (GYs), including γ-GY-2, γ-GY-3, and γ-GY-4.

View Article and Find Full Text PDF

Tackling climate change is one of the greatest challenges of current times and therefore the development of efficient technologies to limit anthropogenic emissions is of utmost urgency. Recent research towards this goal has alluded to the use of carbon-based solid sorbents for carbon capture. Graphynes (GYs), an interesting class of porous carbon membranes, have recently proven their potential as excellent membranes for gas adsorption and separation.

View Article and Find Full Text PDF

π-π interactions are among the most important intermolecular interactions in supramolecular systems. Here we determine experimentally a universal parameter for their strength that is simply based on the size of the interacting contact surfaces. Toward this goal we designed a new cyclophane based on terrylene bisimide (TBI) π-walls connected by para-xylylene spacer units.

View Article and Find Full Text PDF

Understanding the self-assembly of conjugated organic materials at the molecular level is crucial in their potential applications as active components in electronic and optoelectronic devices. The type of aggregation significantly influences the intriguing electronic and optical characteristics differing from their constituent molecules. Perylenediimides (PDIs), electron-deficient molecules exhibiting remarkable n-type semiconducting properties, are among the most explored organic fluorescent materials due to their high fluorescence efficiency, photostability, and optoelectronic properties.

View Article and Find Full Text PDF

Locating the global minimum of a potential energy surface is an arduous task. The complexity of the potential energy surface increases as the number of degrees of freedom of the system increases. The highly rugged nature of the potential energy surface makes the minimization of the total energy of the molecular clusters a difficult optimization problem.

View Article and Find Full Text PDF

Ever since the inception of anion-π interactions, their nature and functional relevance have intrigued researchers. We address the twin challenge of elucidation of the role of extended conjugation and design of all-carbon neutral anion receptors by computations on the anion-π complexes of the halide ions with graphynes. Leveraging on the extended π-conjugation effects, we unfurl the functional relevance of graphynes as anion receptors using descriptors such as electrostatic potential, quadrupole moments, molecular polarizabilities and binding energies.

View Article and Find Full Text PDF
Article Synopsis
  • Graphynes, particularly graphdiyne (GDY), are carbon-based 2D membranes with unique pores that make them attractive for membrane technologies.
  • This study explores how noble gases (He, Ne, and Ar) are adsorbed on GDY using particle swarm optimization (PSO) and differential evolution to find optimal configurations for gas clusters.
  • The research indicates that noble gases initially form monolayers within the triangular pores of GDY and can also intercalate between bilayer GDY systems, with PSO proving effective for exploring energy configurations.
View Article and Find Full Text PDF

Research on the development of theoretical methodologies for modeling noncovalent interactions governing the adsorption of polycyclic aromatic hydrocarbons (PAHs) on graphene and other two-dimensional materials is being intensely pursued in recent times. Highly accurate empirical potentials have emerged as a viable alternative to first-principles calculations for performing large-scale simulations. Herein, we report exploration of the potential energy surfaces for the adsorption of cata-condensed and peri-condensed PAHs on graphynes (GYs) using the improved Lennard-Jones (ILJ) potential.

View Article and Find Full Text PDF

Development of empirical potentials with accurate parameterization is indispensable while modeling large-scale systems. Herein, we report accurate parameterization of an anisotropic dressed pairwise potential model (PPM) for probing the adsorption of noble gases, He, Ne, Ar and Kr on boron nitride sheets. For the noble gas binding on BNH, we carried out a least-squares fit analysis of the dispersion and dispersionless contributions of the interaction potential separately.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has focused on twistronics in bilayer graphene, highlighting superconducting phases at magic angles, but theoretical studies face challenges due to costly computations.
  • To overcome this, empirical force field approaches that account for anisotropic interlayer interactions are gaining popularity as effective alternatives.
  • The study introduces new atomistic empirical potentials, including an improved Lennard-Jones potential and Hod's interlayer potential, calibrated against DFT calculations, to better describe interlayer stacking, sliding, and twisting in bilayer graphynes.
View Article and Find Full Text PDF

Confinement of atoms and molecules brings forth fascinating properties to chemical systems that are otherwise not known in the bulk. Carbon nanotubes (CNTs) and fullerenes are excellent hosts for probing the confinement effects. Herein, we explore the potential energy surfaces of large noble gas clusters, Ngn (Ng = He, Ne and Ar; n = 10, 20, 30, 40, and 50), in the confines of CNTs of various lengths.

View Article and Find Full Text PDF

Gas-phase spectroscopic detection of tiny carbon clusters is a recent success story in the area of carbon cluster research. However, experimental production and isolation of these clusters are extremely difficult because of their high reactivity. One possibility to isolate the generated clusters would be to deposit them on graphene and to desorb them for subsequent use.

View Article and Find Full Text PDF

The remarkable performance of carbon membranes for the selective passage of various species has led to extensive research in designing smart membranes. The mechanical stability of graphene in conjunction with the excellent host-guest chemistry of crown ethers makes the recently synthesized family of crown ether-embedded graphene nanomeshes promising candidates for sieving applications. Inspired by the excellent control over pore architectures offered by such nanomeshes, we investigate the abilities of crown ether-embedded graphene nanomeshes for noble gas separation by the size-sieving mechanism and for He isotope separation by the quantum sieving mechanism.

View Article and Find Full Text PDF

Effective treatment of malignant melanoma requires an appropriate combination of therapeutic intervention with long-term prognosis as it often survives by monotherapies. Herein, we report a novel melanoma-targeted theranostic nanoenvelope (MTTNe: ISQ@BSA-AuNC@AuNR@DAC@DR5) which has been constructed by assembling a bovine serum albumin (BSA) stabilized gold nanocluster on a gold nanorod (BSA-AuNC@AuNR), a three-in-one theranostic modality, i.e.

View Article and Find Full Text PDF

Theoretical design and experimental realization of novel nanoporous architectures in carbon membranes has been a success story in recent times. Research on graphynes, an interesting class of materials in carbon flatland, has contributed immensely to this success story. Graphyne frameworks possessing sp and sp hybridized carbon atoms offer a variety of uniformly distributed nanoporous architectures for applications ranging from water desalination, gas separation, and energy storage to catalysis.

View Article and Find Full Text PDF

Research on the permeation of various species through one-atom-thick nanoporous carbon membranes has gained an unprecedented importance in the past decade, thanks to the development of numerous theoretical design strategies for a plethora of applications ranging from gas separation, water desalination, isotope separation, and chiral separation, to DNA sequencing. Although some of the recent experiments have demonstrated successful performance of such carbon membranes in sieving, many of the suggested applications are yet to be realized in experiments. This review aims to draw the attention of the theoretical as well as the experimental researchers working on two-dimensional carbon materials toward the recent theoretical developments probing the permeation of various species such as atoms, ions, small molecules, and biopolymers like DNA through carbon frameworks like graphynes, graphdiyne, graphenylenes, and various forms of nanoporous graphene, including graphene crown ethers.

View Article and Find Full Text PDF

Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths.

View Article and Find Full Text PDF

Remarkable selectivity with which crown ethers served as macrocyclic hosts for various guest species has led to numerous investigations on structure-specific interactions. Successful fabrication of graphene nanomeshes has opened up a plethora of avenues for sensing and separation applications. Embedding crown ether backbones in graphene frameworks can therefore be an interesting strategy for exploring the advantages offered by crown ether backbones, yet having the properties of graphene-based materials.

View Article and Find Full Text PDF