Alloy formation is ubiquitous in inorganic materials science, and it strongly depends on the similarity between the alloyed atoms. Since molecules have widely different shapes, sizes and bonding properties, it is highly challenging to make alloyed molecular crystals. Here we report the generation of homogenous molecular alloys of organic light emitting diode materials that leads to tuning in their bandgaps and fluorescence emission.
View Article and Find Full Text PDFWe demonstrate systematic tuning in the optical bandgaps of molecular crystals achieved by the generation of molecular alloys/solid solutions of a series of diphenyl dichalcogenides-characterized by weak chalcogen bonding interactions involving S, Se, and Te atoms. Despite the variety in chalcogen bonding interactions found in this series of dichalcogenide crystals, they show isostructural interaction topologies, enabling the formation of solid solutions. The alloy crystals exhibit Vegard's law-like trends of variation in their unit cell dimensions and a nonlinear trend for the variation in optical bandgaps with respect to their compositions.
View Article and Find Full Text PDFEffective treatment of malignant melanoma requires an appropriate combination of therapeutic intervention with long-term prognosis as it often survives by monotherapies. Herein, we report a novel melanoma-targeted theranostic nanoenvelope (MTTNe: ISQ@BSA-AuNC@AuNR@DAC@DR5) which has been constructed by assembling a bovine serum albumin (BSA) stabilized gold nanocluster on a gold nanorod (BSA-AuNC@AuNR), a three-in-one theranostic modality, i.e.
View Article and Find Full Text PDFJ Phys Chem Lett
February 2018
Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths.
View Article and Find Full Text PDFQuartets of Au nanorods were designed by combining the methodologies of lateral and longitudinal assemblies. A high electric field prevailing at the quartet junctions results in large enhancement in the Raman signals of molecules. FDTD simulations showed that the displacement of the lateral dimers in quartets expands the scope of hot spot distribution.
View Article and Find Full Text PDFJ Phys Chem Lett
June 2012
Enhancement of Raman signals of pyrene due to the enhanced electric fields on the surface of silver nanoparticles has been investigated by controlling the thickness of the silica shell. Dimeric nanostructures having well-defined gaps between two silver nanoparticles were prepared, and the gap size (d) was varied from 1.5 to 40 nm.
View Article and Find Full Text PDF