Publications by authors named "Reshmi Thomas"

Alloy formation is ubiquitous in inorganic materials science, and it strongly depends on the similarity between the alloyed atoms. Since molecules have widely different shapes, sizes and bonding properties, it is highly challenging to make alloyed molecular crystals. Here we report the generation of homogenous molecular alloys of organic light emitting diode materials that leads to tuning in their bandgaps and fluorescence emission.

View Article and Find Full Text PDF

We demonstrate systematic tuning in the optical bandgaps of molecular crystals achieved by the generation of molecular alloys/solid solutions of a series of diphenyl dichalcogenides-characterized by weak chalcogen bonding interactions involving S, Se, and Te atoms. Despite the variety in chalcogen bonding interactions found in this series of dichalcogenide crystals, they show isostructural interaction topologies, enabling the formation of solid solutions. The alloy crystals exhibit Vegard's law-like trends of variation in their unit cell dimensions and a nonlinear trend for the variation in optical bandgaps with respect to their compositions.

View Article and Find Full Text PDF

Effective treatment of malignant melanoma requires an appropriate combination of therapeutic intervention with long-term prognosis as it often survives by monotherapies. Herein, we report a novel melanoma-targeted theranostic nanoenvelope (MTTNe: ISQ@BSA-AuNC@AuNR@DAC@DR5) which has been constructed by assembling a bovine serum albumin (BSA) stabilized gold nanocluster on a gold nanorod (BSA-AuNC@AuNR), a three-in-one theranostic modality, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research on excitons and plasmons has resulted in important technological advancements, showing interesting similarities in their behaviors when studied separately or together.
  • The discussion focuses on how these phenomena are explained through a dipolar coupling model, particularly in relation to chromophores and noble metal nanostructures.
  • The strong dipolar strengths of plasmonic transitions contribute to unique optical properties and enhancements in Raman signals, leading to innovative detection methods for analytes using plasmonic platforms.
View Article and Find Full Text PDF

Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths.

View Article and Find Full Text PDF

Quartets of Au nanorods were designed by combining the methodologies of lateral and longitudinal assemblies. A high electric field prevailing at the quartet junctions results in large enhancement in the Raman signals of molecules. FDTD simulations showed that the displacement of the lateral dimers in quartets expands the scope of hot spot distribution.

View Article and Find Full Text PDF

Enhancement of Raman signals of pyrene due to the enhanced electric fields on the surface of silver nanoparticles has been investigated by controlling the thickness of the silica shell. Dimeric nanostructures having well-defined gaps between two silver nanoparticles were prepared, and the gap size (d) was varied from 1.5 to 40 nm.

View Article and Find Full Text PDF