Publications by authors named "Rotem Edri"

Chemical and geological processes on prebiotic Earth are believed to have resulted in the emergence of life through the increasing organization and functionality of organic molecules. This primer provides an overview of some key abiotic chemical and physical processes that could have contributed to life's building blocks (amino acids, nucleotides, fatty acids, and monosaccharides) becoming more ordered during the early stages in the origin of life. The processes considered include polymerization, intramolecular folding, multimolecular assembly, and chemical evolution through various selective mechanisms.

View Article and Find Full Text PDF

The mystery of the origins of life is one of the most difficult yet intriguing challenges to which humanity has grappled. How did biopolymers emerge in the absence of enzymes (evolved biocatalysts), and how did long-lasting chemical evolution find a path to the highly selective complex biology that we observe today? In this paper, we discuss a chemical framework that explores the very roots of catalysis, demonstrating how standard catalytic activity based on chemical and physical principles can evolve into complex machineries. We provide several examples of how prebiotic catalysis by small molecules can be exploited to facilitate polymerization, which in biology has transformed the nature of catalysis.

View Article and Find Full Text PDF

The origins of biopolymers pose fascinating questions in prebiotic chemistry. The marvelous assembly proficiencies of biopolymers suggest they are winners of a competitive evolutionary process. Sophisticated molecular assembly is ubiquitous in life where it is often emergent upon polymerization.

View Article and Find Full Text PDF