Publications by authors named "Rohit Chand"

Purpose: Hemophilia B is an X-linked congenital bleeding disorder caused by a deficiency of coagulation factor IX (FIX) clotting activity. This study evaluated safety and efficacy of nonacog alfa, a recombinant human blood coagulation FIX replacement product, in males aged 12-65 years with hemophilia B (FIX activity ≤ 2%) with or without inhibitors in India.

Methods: In this multicenter, open-label, post-approval phase 4 study, participants were treated for up to 8 weeks, with up to a 4-week screening period and a subsequent post-treatment 28-day safety observation period.

View Article and Find Full Text PDF

Purpose: Hemophilia A is an X-linked congenital disorder, characterized by factor VIII (FVIII) deficiency. Globally, India has the highest population of patients with hemophilia, and there is a clear unmet need for appropriate and effective treatment for this patient population. This multicenter, open-label, post-approval study evaluated the safety and efficacy of moroctocog alfa in patients with moderate or severe congenital hemophilia A in India.

View Article and Find Full Text PDF

Purpose: This phase 4, randomized, open-label, multicenter study in healthy Indian infants and toddlers evaluated the safety, tolerability, and immunogenicity of the 13-valent pneumococcal conjugate vaccine (PCV13) formulated in a multidose vial (MDV) or single prefilled syringe (PFS).

Methods: Healthy Indian infants (6 weeks of age) were randomized 1:1 to receive either PCV13-MDV or PCV13-PFS concomitant with routine pediatric vaccines. Subjects received a single dose of either PCV13-MDV or PCV13-PFS as a 4-dose schedule (infant series: 1 dose at 6, 10, and 14 weeks of age; toddler dose: 12 months of age).

View Article and Find Full Text PDF

Purpose: The 13-valent pneumococcal conjugate vaccine (PCV13) was recently approved in India for the prevention of pneumococcal disease in children aged 6 to 17 years based on global data as well as immunogenicity and safety findings from a phase 3 study. The current phase 4 study in India further evaluated the safety profile of PCV13 in this age group to support the positive benefit-risk profile of PCV13.

Methods: Healthy male and female children aged 6 to 17 years in India were administered a single intramuscular injection of PCV13.

View Article and Find Full Text PDF

Cannabis, also known as marijuana, is the most abused psychoactive drug worldwide. Several countries are legalizing the medicinal and recreational use of cannabis. At the same time, stricter laws are being drafted for driving or working under the influence of the drug.

View Article and Find Full Text PDF

Okadaic acid (OA) is one of the most prevalent and largely distributed bio-toxin in the world. Consumption of OA results in a series of digestive ailments such as nausea and diarrhea. This study demonstrates the preparation and functioning of an electrochemical microfluidic biochip for the detection of OA.

View Article and Find Full Text PDF

Nanoscale MoS2 has attracted extensive attention for sensing due to its superior properties. This study outlines a microfluidic and electrochemical biosensing methodology for the multiplex detection of paratuberculosis-specific miRNAs. Herein, we report the synthesis of MoS2 nanosheets decorated with a copper ferrite (CuFe2O4) nanoparticle composite and molecular probe immobilized MoS2 nanosheets as nanocarriers for the electrochemical detection of miRNAs.

View Article and Find Full Text PDF

Current food production faces tremendous challenges from growing human population, maintaining clean resources and food qualities, and protecting climate and environment. Food sustainability is mostly a cooperative effort resulting in technology development supported by both governments and enterprises. Multiple attempts have been promoted in tackling challenges and enhancing drivers in food production.

View Article and Find Full Text PDF

An optoelectronic sensor is a rapid diagnostic tool that allows for an accurate, reliable, field-portable, low-cost device for practical applications. In this study, template-free In situ gold nanobundles (Au NBs) were fabricated on an electrode for optoelectronic sensing of fowl adenoviruses (FAdVs). Au NB film was fabricated on carbon electrodes working area using L(+) ascorbic acid, gold chroloauric acid and poly-l-lysine (PLL) through modified layer-by-layer (LbL) method.

View Article and Find Full Text PDF

Outbreaks of foodborne diseases related to fresh produce have been increasing in North America and Europe. Viral foodborne pathogens are poorly understood, suffering from insufficient awareness and surveillance due to the limits on knowledge, availability, and costs of related technologies and devices. Current foodborne viruses are emphasized and newly emerging foodborne viruses are beginning to attract interest.

View Article and Find Full Text PDF

Noroviruses are a foremost cause of gastroenteritis outbreaks throughout the world. On-site sample processing and detection of the viral clinical samples has always been a problem. This study reports an all-polydimethylsiloxane microfluidic chip integrated with screen-printed carbon electrode for the electrochemical detection of norovirus.

View Article and Find Full Text PDF

Most of the reported field effect transistors (FETs) fall short of a general method to uniquely specify and detect a target analyte. For this reason, we propose a pentacene-based FET with a graphene oxide support system (GOSS), composed of functionalized graphene oxide (GO) ink. The GOSS with a specific moiety group to capture the biomaterial of interest was inkjet printed on the pentacene FET.

View Article and Find Full Text PDF

In this study, we developed a capacitive sensor for the one-step and label-free detection of protein kinase A (PKA) enzyme. Metal-insulator-semiconductor (MIS) and electrolyte-insulator-semiconductor (EIS) are a simple electronic transducer, which allows efficient detection of the target analyte. For this reason, we performed a comparative sensing of PKA on the MIS and EIS capacitive sensor.

View Article and Find Full Text PDF

Rapid and reliable molecular analysis of DNA for disease diagnosis is highly sought-after. FET-based sensors fulfill the demands of future point-of-care devices due to its sensitive charge sensing and possibility of integration with electronic instruments. However, most of the FETs are unstable in aqueous conditions, less sensitive and requires conventional Ag/AgCl electrode for gating.

View Article and Find Full Text PDF

Adenosine is one of the nucleoside which plays an important role in signal transduction and neuromodulation. This work proposes a simple electrochemical assay, comprising two enzymes and rhodium complex based electron transfer mediator, for the detection of adenosine. Sequential reaction of adenosine deaminase and L-glutamic dehydrogenase and the supporting cycle between β-NADH and mediator enable quantitative analysis of adenosine.

View Article and Find Full Text PDF

Herein, we report a homogeneous assay for protein kinase activity using an electrochemistry-based probe. The approach involves a peptide substrate conjugated with a redox tag and the phosphate-specific receptor immobilized on an electrode surface. The peptide substrate phosphorylated by a protein kinase binds to the receptor site of the probe, which results in a redox current under voltammetric measurement.

View Article and Find Full Text PDF

The number of pesticides used in agriculture is increasing steadily, leading to contamination of soil and drinking water. Herein, we present a microfluidic platform to detect the extent of contamination in soil samples. A microchip capillary electrophoresis system with in-channel electrodes was fabricated for label-free electroanalytical detection of triazine herbicides.

View Article and Find Full Text PDF

A fully integrated microchip for performing cell lysis, polymerase chain reaction (PCR) and quantitative analysis of DNA amplicons in a single step is described herein. The chip was built on glass substrate using an indium-tin-oxide (ITO) microheater and PDMS engraved microchannels, which integrated an electrochemical cell lysis zone, a continuous flow PCR module and capillary electrophoresis amperometric detection (CE-AD) system. The total length of the microchannel was 4625 mm for performing 25 cycles of flow-through PCR and was laid on a handheld form factor of 96 × 96 mm(2) area.

View Article and Find Full Text PDF

Sulfur-containing amino acids, such as cysteine and homocysteine play crucial roles in biological systems for the diagnosis of medical states. In this regard, this paper deals with separation, aliquot and detection of amino thiols on a microchip capillary electrophoresis with electrochemical detection in an inverted double Y-shaped microchannel. Unlike the conventional capillary electrophoresis, the modified microchannel design helps in storing the separated thiols in different reservoirs for further analysis, if required; and also eliminates the need of electrodes regeneration.

View Article and Find Full Text PDF

Numerous studies have identified beta-amyloid(1-42) protein (Abeta42) in the cerebrospinal fluid as a potential biomarker of Alzheimer's disease. It is of particular interest to establish the diagnosis before reaching the stage of clinical severity. The current methods for studying amyloid detection, however, is often time-consuming, expensive, and labor intensive, making the analytical process very slow.

View Article and Find Full Text PDF

Detection and quantitation of nucleic acids have gained much importance in the last couple of decades, especially in the post-human genome project era. Such processes are tedious, time consuming and require expensive reagents and equipment. Therefore, in the present study, we demonstrated a simple process for the separation and analysis of small DNA fragments using capillary electrophoretic amperometric detection on an inexpensive disposable glass microchip.

View Article and Find Full Text PDF

A DNA hybridization sensor using pentacene thin film transistors (TFTs) is an excellent candidate for disposable sensor applications due to their low-cost fabrication process and fast detection. We fabricated pentacene TFTs on glass substrate for the sensing of DNA hybridization. The ss-DNA (polyA/polyT) or ds-DNA (polyA/polyT hybrid) were immobilized directly on the surface of the pentacene, producing a dramatic change in the electrical properties of the devices.

View Article and Find Full Text PDF