Publications by authors named "Rohan J Meshram"

Microbial infection remains a global health threat and there is a continuous rise in associated mortality rates. The current study reports the resynthesis of thirteen thiazolyl-2-chloroacetamide derivatives (4a-4m) by using optimization of base, solvent and their molar equivalent ratio to improve yield and such thiazole derivatives as potential antimicrobial agents. We present the resynthesis data and confirm the compound structures using spectroscopic techniques.

View Article and Find Full Text PDF

COVID-19 has proved to be a global health crisis during the pandemic, and the emerging JN.1 variant is a potential threat. Therefore, finding alternative antivirals is of utmost priority.

View Article and Find Full Text PDF

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge due to the emergence of drug-resistant strains. This study targets Flavin-dependent thymidylate synthase (ThyX), an essential enzyme in the thymidylate biosynthesis pathway crucial for bacterial DNA replication. We utilized advanced computational techniques, including molecular dynamics (MD) simulations and interaction energy analysis, to examine the binding interactions and stability of various thiazole-thiadiazole compounds with Mtb ThyX.

View Article and Find Full Text PDF

This study focuses on the design and synthesis of 3-substituted-2-oxindole derivatives aimed at developing dual-active molecules with anti-cancer and anti-inflammatory properties. The molecules were designed with diverse structural and functional features while adhering to Lipinski, Veber, and Leeson criteria. Physicochemical properties were assessed using SWISSADME to ensure drug-likeness and favourable pharmacokinetics.

View Article and Find Full Text PDF

Tuberculosis remains a global health threat, with increasing infection rates and mortality despite existing anti-TB drugs. The present work focuses on the research findings regarding the development and evaluation of thiadiazole-linked thiazole derivatives as potential anti-tuberculosis agents. We present the synthesis data and confirm the compound structures using spectroscopic techniques.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infections are emerging as one of the foremost challenges in healthcare owing to its chronicity and the virus's quasispecies nature. Worldwide, over 170 million people are chronically infected with HCV, with an annual mortality of over 500,000 people across the world. The emerging pathophysiological evidence links HCV infections to a risk of developing liver diseases such as cirrhosis and hepatocellular carcinoma.

View Article and Find Full Text PDF

N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides and their N-ethyl analogues (flutamides) are versatile scaffolds with a wide spectrum of biological activities. A series of new N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides (8a-t) and their N-ethyl analogous (9a-t) were synthesized and characterized. The inhibitory potential of the synthesized compounds on the viability of three human cancer cell lines HEP3BPN 11 (liver), MDA-MB 453 (breast), and HL 60 (leukemia) were assessed.

View Article and Find Full Text PDF

Leishmaniasis is one of the most neglected tropical diseases that demand immediate attention to the identification of new drug targets and effective drug candidates. The present study demonstrates the possibility of using threonine synthase (TS) as a putative drug target in leishmaniasis disease management. We report the construction of an effective homology model of the enzyme that appears to be structurally as well as functionally well conserved.

View Article and Find Full Text PDF

Leishmaniasis is a tropical neglected disease that imposes major health concerns in many endemic countries worldwide and requires urgent attention to the identification of new drug targets as well as drug candidates. In the current study, we propose homoserine kinase (HSK) inhibition as a strategy to induce pathogen mortality via generating threonine deficiency. We introduce a homology-based molecular model of leishmanial HSK that appears to possess all conserved structural as well as functional features in the GHMP kinase family.

View Article and Find Full Text PDF

There are many online resources that focus on chemical diversity of natural compounds, but only handful of resources exist that focus solely on flavonoid compounds and integrate structural and functional properties; however, extensive collated flavonoid literature is still unavailable to scientific community. Here we present an open access database 'FlavoDb' that is focused on providing physicochemical properties as well as topological descriptors that can be effectively implemented in deducing large scale quantitative structure property models of flavonoid compounds. In the current version of database, we present data on 1, 19,400 flavonoid compounds, thereby covering most of the known structural space of flavonoid class of compounds.

View Article and Find Full Text PDF

We have previously shown that metastases are generally characterized by a core program of gene expression that induces the oxidative energy metabolism, activates vascularization/tissue remodeling, silences extracellular matrix interactions, and alters ion homeostasis. This core program distinguishes metastases from their originating primary tumors as well as from their target host tissues. We hypothesized that organ preference is reflected in additional, site-selective components within the metastatic gene expression programs.

View Article and Find Full Text PDF

Development of novel, safe and effective drug candidates combating the emerging drug resistance has remained a major focus in the mainstream of anti-tuberculosis research. Here, we inspired to design and synthesize series of new pyridin-4-yl-1,3,4-oxadiazol-2-yl-thio-ethylidene-hydrazinecarbothioamide derivatives as potential anti-tubercular agents. The anti-tubercular bioactive assay demonstrated that the synthesized compounds exhibit potent anti-tubercular activity (MIC = 3.

View Article and Find Full Text PDF

Flavonoids correspond to a major class of polyphenolic phytochemicals with flavone as major parent scaffold. This class of compounds is attributed with very rich nutritional as well as therapeutic values. The present study focuses on a panel of 16 flavonoid molecules that are demonstrated to exhibit various bioactivities like anti-angiogenic, anti-inflammatory as well as possess antioxidant potential.

View Article and Find Full Text PDF

The intervention of functional foods as complementary therapeutic approach for the amelioration of diabetes and sugar induced cataractogenesis is more appreciated over the present day chemotherapy agents owing to their nontoxic and increased bioavailability concerns. Dietary flavonoids, a class of bioactive phytochemicals is known to have wide range of biological activities against variety of human ailments. In the present study, we demonstrate anti-cataract effect of eight dietary flavonoids in sugar induced lens organ culture study.

View Article and Find Full Text PDF

Leishmaniasis is one of the major health issue in developing countries. The current therapeutic regimen for this disease is less effective with lot of adverse effects thereby warranting an urgent need to develop not only new and selective drug candidates but also identification of effective drug targets. Here we present subtractive genomics procedure for identification of putative drug targets in Leishmania.

View Article and Find Full Text PDF

Finding novel chemical agents for targeting disease associated drug targets often requires screening of large number of new chemical libraries. In silico methods are generally implemented at initial stages for virtual screening. Filtering of such compound libraries on physicochemical and substructure ground is done to ensure elimination of compounds with undesired chemical properties.

View Article and Find Full Text PDF

Introduction: Compounds containing thiadiazole moiety are cognized to possess with variety of clinical and therapeutic activity. Finding a suitable drug target for newly synthesized compounds remain a major bottle neck in current high throughout medicinal chemistry era.

Aim: To effectively synthesize di substituted thiadiazole compounds and demonstrate drug target identification using an in silico pharmacophore probing approach.

View Article and Find Full Text PDF

Glycation-induced cataractogenesis and visual impairment is a major ophthalmic concern of altered sugar homeostasis in humans as well as animals. Searching antiglycating agents from natural sources is widely acknowledged as it can be made bioavailable through diet. The present study was designed to understand the positional suitability of hydroxylation in the flavonoid scaffold for maneuvering it as an anticataract agent.

View Article and Find Full Text PDF

Searching novel, safe and effective anti-inflammatory agents has remained an evolving research enquiry in the mainstream of inflammatory disorders. In the present investigation series of thiazoles bearing pyrazole as a possible pharmacophore were synthesized and assessed for their anti inflammatory activity using in vitro and in vivo methods. In order to decipher the possible anti-inflammatory mechanism of action of the synthesized compounds, cyclooxygenase I and II (COX-I and COX-II) inhibition assays were also carried out.

View Article and Find Full Text PDF

Sugar induced cataractogenesis and visual impairment is more prominent ophthalmic problem in humans suffering from diabetes. Flavonoids have been identified as one of the therapeutically important class of phytochemicals possessing myriad of biological activities. Analyzing the anti-cataract effects of flavonoids from natural sources is an important aspect owing to their bioavailability in variety of dietary sources.

View Article and Find Full Text PDF

The present study was carried out to evaluate anti-Helicobacter pylori and its associated urease activity of labdane diterpenoids isolated from Andrographis paniculata. A molecular docking analysis was performed by using ArgusLab 4.0.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is considered as a foremost cause affecting numerous human liver-related disorders. An effective immuno-prophylactic measure (like stable vaccine) is still unavailable for HCV. We perform an in silico analysis of nonstructural protein 5B (NS5B) based CD4 and CD8 epitopes that might be implicated in improvement of treatment strategies for efficient vaccine development programs against HCV.

View Article and Find Full Text PDF

Formation of new blood vessels (angiogenesis) has been demonstrated to be a basic prerequisite for sustainable growth and proliferation of tumor. Several growth factors, cytokines, small peptides and enzymes support tumor growth either independently or in synergy. Decoding the crucial mechanisms of angiogenesis in physiological and pathological state has remained a subject of intense interest during the past three decades.

View Article and Find Full Text PDF

Angiogenesis: a process of generation of new blood vessels has been proved to be necessary for sustained tumor growth and cancer progression. Inhibiting angiogenesis pathway has long been remained a significant hope for the development of novel, effective and target orientated antitumor agents arresting the tumor proliferation and metastasis. The process of neoangiogenesis as a biological process is regulated by several pro- and anti-angiogenic factors, especially vascular endothelial growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor 1 and transforming growth factor.

View Article and Find Full Text PDF

A novel series of 3-(substituted)-aryl-5-(9-methyl-3-carbazole)-1H-2-pyrazolines (5a-o) has been synthesized and the structures of newly synthesized compounds were characterized by IR, (1)H NMR and mass spectral analysis. All the synthesized compounds were evaluated for their in vitro and in vivo anti-inflammatory activity, and also for their antioxidant activity. Compounds 5b, 5c, 5d and 5n were found to be selective COX-2 inhibitors.

View Article and Find Full Text PDF