Despite the use of therapeutic modalities such as surgery, chemotherapy, and radiotherapy, breast cancer remains a potentially fatal condition for humans. The primary problems with these treatments are their low efficacy and their inevitable side effects to the surrounding healthy tissues. Overcoming these challenges has been achieved through precision therapeutics, where personalized interventions have significantly improved treatment efficacy.
View Article and Find Full Text PDFWhile liposomes enhance the safety and pharmacokinetic profile of free drugs, they have not significantly improved therapeutic efficacy. To overcome this challenge, targeted depletion of tumor-associated macrophages (TAMs) shows significant potential as an effective antitumor therapy, reducing off-target effects in comparison to non-targeted liposomes. In the context of peptide-mediated targeted cancer therapy, we evaluated the reprogramming activity of IFN-γ liposomes on TAMs, as well as that of IFN-γ liposomes modified with an M2 macrophage-targeting peptide, which binds preferentially to murine anti-inflammatory M2 macrophages/M2-like TAMs.
View Article and Find Full Text PDFBackground: Detection of superbugs carrying Extended-spectrum β-lactamase (ESBL) and Carbapenemase resistance genes among hospitalized patients is crucial for infection control and prevention. The aim of this molecular study was to investigate the spread of ESBL and Carbapenemase-producing in two hospitals located in Southwest Iran.
Methods: One hundred clinical isolates of were randomly collected from two hospitals over a period of five months, from November 2023.
Erythrocytes have gained popularity as a natural option for in vivo drug delivery due to their advantages, which include lengthy circulation times, biocompatibility, and biodegradability. Consequently, the drug's pharmacokinetics and pharmacodynamics in red blood cells can be considerably up the dosage. Here, we provide an overview of the erythrocyte membrane's structure and discuss the characteristics of erythrocytes that influence their suitability as carrier systems.
View Article and Find Full Text PDFNanotechnology has advanced significantly, particularly in biomedicine, showing promise for nanomaterial applications. Bacterial infections pose persistent public health challenges due to the lack of rapid pathogen detection methods, resulting in antibiotic overuse and bacterial resistance, threatening the human microbiome. Nanotechnology offers a solution through nanoparticle-based materials facilitating early bacterial detection and combating resistance.
View Article and Find Full Text PDFKaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects.
View Article and Find Full Text PDFEur J Pharm Sci
September 2023
Microbial resistance has increased in recent decades as a result of the extensive and indiscriminate use of antibiotics. The World Health Organization listed antimicrobial resistance as one of ten major global public health threats in 2021. In particular, six major bacterial pathogens, including third-generation cephalosporin-resistant Escherichia coli, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Streptococcus pneumoniae, and Pseudomonas aeruginosa, were found to have the highest resistance-related death rates in 2019.
View Article and Find Full Text PDFJ Pharm Pharmacol
September 2022
Objectives: Metformin has been shown to kill cancer stem-like cells in genetically various types of breast carcinoma. With the aim to simultaneously eradicate the bulk population of tumour cells and the rare population of cancer stem-like cells in breast cancer tissues, we used the combination chemotherapy of docetaxel (DTX) with metformin (MET). Furthermore, we introduce an active loading method based on ammonium sulphate 250 mM (SA) for encapsulating docetaxel into liposomes.
View Article and Find Full Text PDFCombretastatin A4 (CA4), a vascular disrupting agent has been recently proposed as an anticancer agent. However, its low water solubility and low bioavailability limited its clinical efficacy. Overcomingthis issue requires developing new delivery strategies to enhance its anticancer effects.
View Article and Find Full Text PDFMelanoma is a highly aggressive form of skin cancer with a very poor prognosis and excessive resistance to current conventional treatments. Recently, the application of the liposomal delivery system in the management of skin melanoma has been widely investigated. Liposomal nanocarriers are biocompatible and less toxic to host cells, enabling the efficient and safe delivery of different therapeutic agents into the tumor site and further promoting their antitumor activities.
View Article and Find Full Text PDFDocetaxel (DTX) was loaded in nanoliposomes based on a new remote loading method using mannitol and acetic acid as hydration buffer. DTX loading conditions were optimized, and the final formulations were prepared according to the best parameters which were HSPC/mPEG2000-DSPE/Chol (F1), HSPC/mPEG2000-DSPE/DPPG/Chol (F2), HSPC/mPEG2000-DSPE/DSPG/Chol (F3), at molar ratios of 85/5/10, 80/5/5/10, 80/5/5/10, respectively. DTX-liposomes were found of desired size (~115 nm) and homogeneity (PDI ≤ 0.
View Article and Find Full Text PDFBackground: Antimicrobial and antifungal activities of Thrombocidin-1 (TC-1) is shown previously, however,.the anti-cancerous feature of this peptide is still uncovered.
Objective: The objective is to evaluate anti-cancerous feature of recombinant TC-1.
Artif Cells Nanomed Biotechnol
December 2020
Probiotics Antimicrob Proteins
September 2019
Nowadays, cancer remains a major cause of death affecting millions of people. Currently, the antimicrobial peptides (AMPs) as potent anticancer therapeutic agents offer specificity and low levels of side effects in cancer therapy. In the present study, a cationic chimeric peptide (cLFchimera), derived from camel lactoferrin, was expressed as a secretory peptide using P170 expression system in L.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) are an important component of the leukocytic infiltrate of the tumor microenvironment. There is persuasive preclinical and clinical evidence that TAMs induce cancer inanition and malignant progression of primary tumors toward a metastatic state through a highly conserved and fundamental process known as epithelial-mesenchymal transition (EMT). Tumor cells undergoing EMT are distinguished by increased motility and invasiveness, which enable them to spread to distant sites and form metastases.
View Article and Find Full Text PDFPurpose: To investigate whether the G6721T polymorphism (rs.7003908) of the non-homologous end-joining DNA repair XRCC7 gene contributes to the development of exudative age-related macular degeneration (ARMD).
Methods: The present case-control study consisted of 111 patients with exudative ARMD and 112 sex frequency-matched healthy controls that were randomly selected from unrelated volunteers in the same clinic.
Consanguineous marriage is the union of individuals having at least one common ancestor. It is well established that consanguinity is a potential risk factor for many adverse health outcome of offspring. In the present case-control study we tested the hypothesis of an association between parental consanguinity marriages and risk of offspring substance abuse.
View Article and Find Full Text PDF