Environ Sci Process Impacts
February 2025
This paper provides an overview of the INGENIOUS (UnderstandING the sourcEs, traNsformations and fates of IndOor air pollUtantS) project, aiming to better understand air pollution in homes. Although our homes are the microenvironment in which we spend most of our time, we know relatively little about the sources, transformation processes and fates of indoor air pollutants, or our exposure to them. INGENIOUS aims to address this knowledge gap by delivering: an indoor emissions inventory for UK homes; comprehensive air pollutant measurements in 310 homes in Bradford using a combination of low cost-sensors and more advanced air quality instrumentation; an analysis of the impact of indoor air pollution on outdoor air quality and using mobile measurements; insight into future indoor air quality using detailed air pollution models; identification of indoor air pollutants that warrant further toxicological study; and better understanding of the barriers and facilitators for behaviour that drives improved indoor air quality.
View Article and Find Full Text PDFPurpose: Bangladesh has experienced a rapid epidemiological transition from communicable to non-communicable diseases (NCDs) in recent decades. There is, however, limited evidence about multidimensional determinants of NCDs in this population. The BangladEsh Longitudinal Investigation of Emerging Vascular and nonvascular Events (BELIEVE) study is a household-based prospective cohort study established to investigate biological, behavioural, environmental and broader determinants of NCDs.
View Article and Find Full Text PDFIntroduction: While associations between ambient air pollution and respiratory health in chronic obstructive pulmonary disease (COPD) patients are well studied, little is known about individuals' personal exposure to pollution and associated health effects by source.
Aim: To separate measured total personal exposure into indoor-generated and outdoor-generated pollution and use these improved metrics in health models for establishing more reliable associations with exacerbations and respiratory symptoms.
Methods: We enrolled a panel of 76 patients with COPD and continuously measured their personal exposure to particles and gaseous pollutants and location with portable monitors for 134 days on average.
Isoprene is a key trace component of the atmosphere emitted by vegetation and other organisms. It is highly reactive and can impact atmospheric composition and climate by affecting the greenhouse gases ozone and methane and secondary organic aerosol formation. Marine fluxes are poorly constrained due to the paucity of long-term measurements; this in turn limits our understanding of isoprene cycling in the ocean.
View Article and Find Full Text PDFIntroduction: Relative to outdoor air pollution, there is little evidence examining the composition and concentrations of indoor air pollution and its associated health impacts. The INGENIOUS project aims to provide the comprehensive understanding of indoor air pollution in UK homes.
Methods And Analysis: 'Real Home Assessment' is a cross-sectional, multimethod study within INGENIOUS.
Pollution from vehicular emissions is a major cause of poor air quality observed in many urban and semi-urban towns and cities. As such, this study was conducted to assess air quality and the spatiotemporal distribution of vehicular and traffic-related pollutants in several air sheds of Lagos megacity, the economic nerve centre of Nigeria. A setup of low-cost air quality sensors comprising five (5) units was deployed between November 2018 and February 2019 within traffic corridors in the heart of the city.
View Article and Find Full Text PDFAir pollution is acknowledged as a determinant of blood pressure (BP), supporting the hypothesis that air pollution, via hypertension and other mechanisms, has detrimental effects on human health. Previous studies evaluating the associations between air pollution exposure and BP did not consider the effect that air pollutant mixtures may have on BP. We investigated the effect of exposure to single species or their synergistic effects as air pollution mixture on ambulatory BP.
View Article and Find Full Text PDFWe performed more than a year of mobile, 1 Hz measurements of lung-deposited surface area (LDSA, the surface area of 20-400 nm diameter particles, deposited in alveolar regions of lungs) and optically assessed fine particulate matter (PM), black carbon (BC), and nitrogen dioxide (NO) in central London. We spatially correlated these pollutants to two urban emission sources: major roadways and restaurants. We show that optical PM is an ineffective indicator of tailpipe emissions on major roadways, where we do observe statistically higher LDSA, BC, and NO.
View Article and Find Full Text PDFBackground: Air pollution epidemiology has primarily relied on measurements from fixed outdoor air quality monitoring stations to derive population-scale exposure. Characterisation of individual time-activity-location patterns is critical for accurate estimations of personal exposure and dose because pollutant concentrations and inhalation rates vary significantly by location and activity.
Methods: We developed and evaluated an automated model to classify major exposure-related microenvironments (home, work, other static, in-transit) and separated them into indoor and outdoor locations, sleeping activity and five modes of transport (walking, cycling, car, bus, metro/train) with multidisciplinary methods from the fields of movement ecology and artificial intelligence.
Previous studies have investigated the effects of air pollution on chronic obstructive pulmonary disease (COPD) patients using either fixed-site measurements or a limited number of personal measurements, usually for one pollutant and a short time period. These limitations may introduce bias and distort the epidemiological associations as they do not account for all the potential sources or the temporal variability of pollution.We used detailed information on individuals' exposure to various pollutants measured at fine spatiotemporal scale to obtain more reliable effect estimates.
View Article and Find Full Text PDFEnviron Sci Technol
January 2021
The formation of isoprene nitrates (IsN) can lead to significant secondary organic aerosol (SOA) production and they can act as reservoirs of atmospheric nitrogen oxides. In this work, we estimate the rate of production of IsN from the reactions of isoprene with OH and NO radicals during the summertime in Beijing. While OH dominates the loss of isoprene during the day, NO plays an increasingly important role in the production of IsN from the early afternoon onwards.
View Article and Find Full Text PDFEnviron Sci Technol
December 2020
The COVID-19 outbreak greatly limited human activities and reduced primary emissions particularly from urban on-road vehicles but coincided with Beijing experiencing "pandemic haze," raising the public concerns about the effectiveness of imposed traffic policies to improve the air quality. This paper explores the relationship between local vehicle emissions and the winter haze in Beijing before and during the COVID-19 lockdown based on an integrated analysis framework, which combines a real-time on-road emission inventory, in situ air quality observations, and a localized numerical modeling system. We found that traffic emissions decreased substantially during the COVID-19 pandemic, but its imbalanced emission abatement of NO (76%, 125.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
November 2020
Background: Air pollution epidemiology has primarily relied on fixed outdoor air quality monitoring networks and static populations.
Methods: Taking advantage of recent advancements in sensor technologies and computational techniques, this paper presents a novel methodological approach that improves dose estimations of multiple air pollutants in large-scale health studies. We show the results of an intensive field campaign that measured personal exposures to gaseous pollutants and particulate matter of a health panel of 251 participants residing in urban and peri-urban Beijing with 60 personal air quality monitors (PAMs).
Heliyon
June 2020
The concentrations of fine and coarse fractions of airborne particulate matter (PM) and meteorological variables (wind speed, wind direction, temperature and relative humidity) were measured at six selected locations in Ile Ife, a prominent university town in Nigeria using a network of low-cost air quality (AQ) sensor units. The objective of the deployment was to collate baseline air quality data and assess the impact of prevailing meteorological conditions on PM concentrations in selected residential communities downwind of an iron smelting facility. The raw data obtained from OPC-N2 of the AQ sensor units was corrected using the RH correction factor developed based k-Kohler theory.
View Article and Find Full Text PDFProjected future climatic extremes such as heatwaves and droughts are expected to have major impacts on emissions and concentrations of biogenic volatile organic compounds (bVOCs) with potential implications for air quality, climate and human health. While the effects of changing temperature and photosynthetically active radiation (PAR) on the synthesis and emission of isoprene, the most abundant of these bVOCs, are well known, the role of other environmental factors such as soil moisture stress are not fully understood and are therefore poorly represented in land surface models. As part of the Wytham Isoprene iDirac Oak Tree Measurements campaign, continuous measurements of isoprene mixing ratio were made throughout the summer of 2018 in Wytham Woods, a mixed deciduous woodland in southern England.
View Article and Find Full Text PDFThe inaccurate quantification of personal exposure to air pollution introduces error and bias in health estimations, severely limiting causal inference in epidemiological research worldwide. Rapid advancements in affordable, miniaturised air pollution sensor technologies offer the potential to address this limitation by capturing the high variability of personal exposure during daily life in large-scale studies with unprecedented spatial and temporal resolution. However, concerns remain regarding the suitability of novel sensing technologies for scientific and policy purposes.
View Article and Find Full Text PDFEnviron Int
November 2019
In October of 2015, a large underground storage well at the Aliso Canyon natural gas storage facility experienced a massive methane leak (also referred to as "natural gas blowout"), which resulted in the largest ever anthropogenic release of methane from a single point source in the United States. Additional sampling conducted during the event revealed unique gas and particle concentrations in ambient air and a characteristic "fingerprint" of metals in the indoor dust samples similar to samples taken at the blowout site. We further investigated the association between the Aliso Canyon natural gas storage site and several measured air pollutants by: (a) conducting additional emission source studies using meteorological data and correlations between particulate matter, methane, and hazardous air pollutants (HAPs) collected during the natural gas blowout at distances ranging from 1.
View Article and Find Full Text PDFThere is increasing concern about the health impacts of ambient Particulate Matter (PM) exposure. Traditional monitoring networks, because of their sparseness, cannot provide sufficient spatial-temporal measurements characteristic of ambient PM. Recent studies have shown portable low-cost devices (e.
View Article and Find Full Text PDFThe interaction between atmospheric aerosol particles and water vapor influences aerosol size, phase, and composition, parameters which critically influence their impacts in the atmosphere. Methods to accurately measure aerosol water uptake for a wide range of particle types are therefore merited. We present here a new method for characterizing aerosol hygroscopicity, an impaction stage containing a microelectromechanical systems (MEMS) microresonator.
View Article and Find Full Text PDFOcean emissions of inorganic and organic iodine compounds drive the biogeochemical cycle of iodine and produce reactive ozone-destroying iodine radicals that influence the oxidizing capacity of the atmosphere. Di-iodomethane (CHI) and chloro-iodomethane (CHICl) are the two most important organic iodine precursors in the marine boundary layer. Ship-borne measurements made during the TORERO (Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOC) field campaign in the east tropical Pacific Ocean in January/February 2012 revealed strong diurnal cycles of CHI and CHICl in air and of CHI in seawater.
View Article and Find Full Text PDFRecent developments in sensory and communication technologies have made the development of portable air-quality (AQ) micro-sensing units (MSUs) feasible. These MSUs allow AQ measurements in many new applications, such as ambulatory exposure analyses and citizen science. Typically, the performance of these devices is assessed using the mean error or correlation coefficients with respect to a laboratory equipment.
View Article and Find Full Text PDFIntroduction: Relationships between exacerbations of chronic obstructive pulmonary disease (COPD) and environmental factors such as temperature, humidity and air pollution are not well characterised, due in part to oversimplification in the assignment of exposure estimates to individuals and populations. New developments in miniature environmental sensors mean that patients can now carry a personal air quality monitor for long periods of time as they go about their daily lives. This creates the potential for capturing a direct link between individual activities, environmental exposures and the health of patients with COPD.
View Article and Find Full Text PDFRationale: Exacerbations are key events in chronic obstructive pulmonary disease (COPD), affecting lung function decline and quality of life. The effect of exposure to different air pollutants on COPD exacerbations is not clear.
Objectives: To carry out a systematic review, examining associations between air pollutants and hospital admissions for COPD exacerbations.