Publications by authors named "Roberto Adamo"

Staphylococcus aureus is one of the most prominent pathogens responsible for life-threatening hospital acquired infections. Most clinical isolates belong to serotype 5 or 8, which express unique capsular polysaccharides (CP), composed of the rare N-acetyl-β-d-mannosaminuronic acid (β-d-ManNAcA), N-acetyl-α-l-fucosamine (α-l-FucNAc) and N-acetyl-β-d-fucosamine (β-d-FucNAc) that can be used for the development of conjugate vaccines. Different acetylation patterns of CP5 create microheterogeneous polymers, carrying partial zwitterionic character, which may be important for immunological activity.

View Article and Find Full Text PDF

and are major antimicrobial-resistant pathogens that often synergize in polymicrobial infections, such as chronic wound infections. These notorious and increasingly resistant bacteria contribute significantly to reduced antibiotic efficacy. Despite their substantial clinical burden, the urgent need to combat bacterial resistance and extensive research efforts, no vaccines currently exist for either bacterium.

View Article and Find Full Text PDF

is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the cell wall and have been proposed as promising candidate antigens.

View Article and Find Full Text PDF

Glycoconjugate vaccines are based on chemical conjugation of pathogen-associated carbohydrates with immunogenic carrier proteins and are considered a very cost-effective way to prevent infections. Most of the licensed glycoconjugate vaccines are composed of saccharide antigens extracted from bacterial sources. However, synthetic oligosaccharide antigens have become a promising alternative to natural polysaccharides with the advantage of being well-defined structures providing homogeneous conjugates.

View Article and Find Full Text PDF

Meningococcal glycoconjugate vaccines sourced from capsular polysaccharides (CPSs) of pathogenic Neisseria meningitidis strains are well-established measures to prevent meningococcal disease. However, the exact structural factors responsible for antibody recognition are not known. CPSs of Neisseria meningitidis serogroups Y and W differ by a single stereochemical center, yet they evoke specific immune responses.

View Article and Find Full Text PDF

Glycoconjugate vaccines so far licensed are generally composed of a native or size-reduced capsular polysaccharide conjugated to carrier proteins. Detailed information on the structural requirements necessary for CPS recognition is becoming the key to accelerating the development of next-generation improved glycoconjugate vaccines. Structural glycobiology studies using oligosaccharides (OS) complexed with functional monoclonal antibodies represent a powerful tool for gaining information on CPS immunological determinants at the atomic level.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is one of the most critical threats to global public health in the 21st century, causing a large number of deaths every year in both high-income and low- and middle-income countries. Vaccines and monoclonal antibodies can be exploited to prevent and treat diseases caused by AMR pathogens, thereby reducing antibiotic use and decreasing selective pressure that favors the emergence of resistant strains. Here, differences in the mechanism of action and resistance of vaccines and monoclonal antibodies compared to antibiotics are discussed.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is responsible for the death of millions worldwide and stands as a major threat to our healthcare systems, which are heavily reliant on antibiotics to fight bacterial infections. The development of vaccines against the main pathogens involved is urgently required as prevention remains essential against the rise of AMR.

Areas Covered: A systematic research review was conducted on MEDLINE database focusing on the six AMR pathogens defined as ESKAPE (, , , , , and ), which are considered critical or high priority pathogens by the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC).

View Article and Find Full Text PDF

A maternal vaccine to protect neonates against Group B Streptococcus invasive infection is an unmet medical need. Such a vaccine should ideally be offered during the third trimester of pregnancy and induce strong immune responses after a single dose to maximize the time for placental transfer of protective antibodies. A key target antigen is the capsular polysaccharide, an anti-phagocytic virulence factor that elicits protective antibodies when conjugated to carrier proteins.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs) are spontaneously released by many gram-negative bacteria during their growth and constitute an important virulence factor for bacteria, helping them to survive through harsh environmental conditions. Native OMVs, naturally-released from bacteria, are produced at a level too low for vaccine manufacturing, requiring chemical treatment (detergent-extracted) or genetic manipulation, resulting in generalized modules for membrane antigens (GMMAs). Over the years, the nature and properties of OMVs have made them a viable platform for vaccine development.

View Article and Find Full Text PDF
Article Synopsis
  • Group A Carbohydrate (GAC), linked to a carrier protein, shows promise as a vaccine candidate against Group A Streptococcus infections, with GAC's structure consisting of a polyrhamnose backbone and N-acetylglucosamine residues.
  • Researchers synthesized various lengths of GAC and polyrhamnose fragments and confirmed that the immune-targeting portion (epitope) is based on GlcNAc within the polyrhamnose structure.
  • In animal tests, the GAC conjugate produced stronger immune responses, indicated by higher levels of anti-GAC antibodies, compared to the polyRha variant, supporting GAC as the preferred component for a potential vaccine.
View Article and Find Full Text PDF

Multivalent vaccines addressing an increasing number of Streptococcus pneumoniae types (7-, 10-, 13-, 15-, 20-valent) have been licensed over the last 22 years. The use of polysaccharide-protein conjugate vaccines has been pivotal in reducing the incidence of invasive pneumococcal disease despite the emergence of non-vaccine serotypes. Notwithstanding its undoubtable success, some weaknesses have called for continuous improvement of pneumococcal vaccination.

View Article and Find Full Text PDF

Group B (GBS) is a Gram-positive bacterium and the most common cause of neonatal blood and brain infections. At least 10 different serotypes exist, that are characterized by their different capsular polysaccharides. The Group B carbohydrate (GBC) is shared by all serotypes and therefore attractive be used in a glycoconjugate vaccine.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria , , , , , , , non-typhoidal , and , and the fungus , have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B , are classified as concerning threats.

View Article and Find Full Text PDF

The introduction of glycoconjugate vaccines marks an important point in the fight against various infectious diseases. The covalent conjugation of relevant polysaccharide antigens to immunogenic carrier proteins enables the induction of a long-lasting and robust IgG antibody response, which is not observed for pure polysaccharide vaccines. Although there has been remarkable progress in the development of glycoconjugate vaccines, many crucial parameters remain poorly understood.

View Article and Find Full Text PDF

Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis.

View Article and Find Full Text PDF

Despite the considerable progress toward the eradication of meningococcal disease with the introduction of glycoconjugate vaccines, previously unremarkable serogroup X has emerged in recent years, recording several outbreaks throughout the African continent. Different serogroup X polysaccharide-based vaccines have been tested in preclinical trials, establishing the principles for further improvement. To elucidate the antigenic determinants of the MenX capsular polysaccharide, we generated a monoclonal antibody, and its bactericidal nature was confirmed using the rabbit serum bactericidal assay.

View Article and Find Full Text PDF

Nanoparticle systems are being explored for the display of carbohydrate antigens, characterized by multimeric presentation of glycan epitopes and special chemico-physical properties of nano-sized particles. Among them, outer membrane vesicles (OMVs) are receiving great attention, combining antigen presentation with the immunopotentiator effect of the Toll-like receptor agonists naturally present on these systems. In this context, we are testing Generalized Modules for Membrane Antigens (GMMA), OMVs naturally released from Gram-negative bacteria mutated to increase blebbing, as carrier for polysaccharides.

View Article and Find Full Text PDF

Despite the many advances that have occurred in the field of vaccine adjuvants, there are still unmet needs that may enable the development of vaccines suitable for more challenging pathogens (e.g., HIV and tuberculosis) and for cancer vaccines.

View Article and Find Full Text PDF
Article Synopsis
  • - Glycerol phosphate (GroP)-based teichoic acids (TAs) are important cell-wall components found in enterococcus and staphylococcus bacteria, and their role in immune responses has been studied.
  • - This research is the first to investigate how a monoclonal antibody interacts with synthetic TAs at a molecular level, using various techniques like microarrays and spectroscopy.
  • - The study reveals that the structure of GroP residues, particularly their quantity and orientation, is key to the antibody's binding, with sugar attachments playing a significant role in presenting the structure to the antibody.
View Article and Find Full Text PDF

Glycoconjugate vaccines, obtained by carbohydrates covalently bound to protein carriers, have contributed to fight diseases such as meningitidis, pneumonia and typhoid fever. Despite new technologies such as RNA and adenovirus based vaccine have now reached the market, these approaches are unable to target carbohydrates which are key virulence factors.This issue intends to provide an overview on relevant directions where the field is evolving and serve as starting point to increase interest in this exciting and fundamental part of vaccinology.

View Article and Find Full Text PDF

Neisseria meningitidis is a major cause of bacterial meningitidis worldwide. Children less than five years and adolescents are particularly affected. Nearly all invasive strains are surrounded by a polysaccharide capsule, based on which, 12 N.

View Article and Find Full Text PDF