Publications by authors named "Robert D Bell"

RNA exon editing is a therapeutic strategy for correcting disease-causing mutations by inducing -splicing between a synthetic RNA molecule and an endogenous pre-mRNA target, resulting in functionally restored mRNA and protein. This approach enables the replacement of exons at the kilobase scale, addresses multiple mutations with a single therapy, and maintains native gene expression without changes to DNA. For genes larger than 5 kb, RNA exon editors can be delivered in a single vector despite AAV capacity limitations because only mutated exons need to be replaced.

View Article and Find Full Text PDF

Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce.

View Article and Find Full Text PDF

Classic galactosemia (CG) is a rare disorder of autosomal recessive inheritance. It is caused predominantly by point mutations as well as deletions in the gene encoding the enzyme galactose-1-phosphate uridyltransferase (GALT). The majority of the more than 350 mutations identified in the GALT gene cause a significant reduction in GALT enzyme activity resulting in the toxic buildup of galactose metabolites that in turn is associated with cellular stress and injury.

View Article and Find Full Text PDF

Efficient therapeutic transport across the neurovasculature remains a challenge for developing medicine to treat central nervous system (CNS) disorders (Bell and Ehlers, Neuron 81:1-3, 2014). This chapter is meant to provide some insight and key considerations for developing and evaluating various technologies and approaches to CNS drug delivery. First, a brief review of various biological barriers, including the immune system, cellular and protein components of the blood-brain barrier (BBB), and clearance mechanisms in peripheral organs is provided.

View Article and Find Full Text PDF

Non-human primates (NHPs) are a preferred animal model for optimizing adeno-associated virus (AAV)-mediated CNS gene delivery protocols before clinical trials. In spite of its inherent appeal, it is challenging to compare different serotypes, delivery routes, and disease indications in a well-powered, comprehensive, multigroup NHP experiment. Here, a multiplex barcode recombinant AAV (rAAV) vector-tracing strategy has been applied to a systemic analysis of 29 distinct, wild-type (WT), AAV natural isolates and engineered capsids in the CNS of eight macaques.

View Article and Find Full Text PDF

Galactosemias are a family of autosomal recessive genetic disorders resulting from impaired enzymes of the Leloir pathway of galactose metabolism including galactokinase, galactose uridyltransferase, and UDP-galactose 4-epimerase that are critical for conversion of galactose into glucose-6-phosphate. To better understand pathophysiological mechanisms involved in galactosemia and develop novel therapies to address the unmet need in patients, it is important to develop reliable assays to measure the activity of the Leloir pathway enzymes. Here we describe in-depth methods for indirectly measuring galacose-1-phosphate uridyltransferase activity in cell culture and animal tissues.

View Article and Find Full Text PDF

Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing.

View Article and Find Full Text PDF

Schizophrenia is a complex and heterogenous disease that presents with abnormalities in glutamate signaling and altered immune and inflammatory signals. Genome-wide association studies have indicated specific genes and pathways that may contribute to schizophrenia. We assessed the impact of the functional missense variant SLC39A8 (ZIP8)-A391T (ZIP8) on zinc transport, glutamate signaling, and the neuroinflammatory response.

View Article and Find Full Text PDF

Background: Acute neurological insults caused by infection, systemic inflammation, ischemia, or traumatic injury are often associated with breakdown of the blood-brain barrier (BBB) followed by infiltration of peripheral immune cells, cytotoxic proteins, and water. BBB breakdown and extravasation of these peripheral components into the brain parenchyma result in inflammation, oxidative stress, edema, excitotoxicity, and neurodegeneration. These downstream consequences of BBB dysfunction can drive pathophysiological processes and play a substantial role in the morbidity and mortality of acute and chronic neurological insults, and contribute to long-term sequelae.

View Article and Find Full Text PDF

Alzheimer disease (AD) is a neurodegenerative disorder characterized by extracellular β-amyloid (Aβ) deposition. Although peripheral inflammation and cerebrovascular pathology are reported in AD, there is a lack of plasma biomarkers in this field. Because the contact system is triggered in patient plasma, we hypothesized that the hemostasis profile could be a novel biomarker in AD.

View Article and Find Full Text PDF
Article Synopsis
  • GLUT1 at the blood-brain barrier is crucial for glucose transport into the brain, and its reduction is linked to Alzheimer's disease progression.
  • GLUT1 deficiency in mice leads to significant brain blood flow issues, worse amyloid pathology, and increased neuron loss, indicating it accelerates Alzheimer’s-related deterioration.
  • Targeting GLUT1 could be a potential approach for treating the cognitive and vascular problems associated with Alzheimer's disease.
View Article and Find Full Text PDF

Objective: Long noncoding RNAs (lncRNAs) represent a rapidly growing class of RNA genes with functions related primarily to transcriptional and post-transcriptional control of gene expression. There is a paucity of information about lncRNA expression and function in human vascular cells. Thus, we set out to identify novel lncRNA genes in human vascular smooth muscle cells and to gain insight into their role in the control of smooth muscle cell phenotypes.

View Article and Find Full Text PDF

Molecular "hitchhiking" through receptor-mediated transcytosis at the blood-brain barrier is a CNS drug delivery strategy. In this issue of Neuron, Niewoehner et al. (2014) describe a modular anti-transferrin receptor Fab approach for shuttling therapeutic antibodies into the brain.

View Article and Find Full Text PDF

Pericytes are cells in the blood-brain barrier that degenerate in Alzheimer's disease (AD), a neurological disorder associated with neurovascular dysfunction, abnormal elevation of amyloid β-peptide (Aβ), tau pathology and neuronal loss. Whether pericyte degeneration can influence AD-like neurodegeneration and contribute to disease pathogenesis remains, however, unknown. Here we show that in mice overexpressing Aβ-precursor protein, pericyte loss elevates brain Aβ40 and Aβ42 levels and accelerates amyloid angiopathy and cerebral β-amyloidosis by diminishing clearance of soluble Aβ40 and Aβ42 from brain interstitial fluid prior to Aβ deposition.

View Article and Find Full Text PDF

Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease.

View Article and Find Full Text PDF

Soluble low density lipoprotein receptor-related protein-1 (sLRP1) binds ~70% of amyloid β-peptide (Aβ) in human plasma. In Alzheimer disease (AD) and individuals with mild cognitive impairment converting to AD, plasma sLRP1 levels are reduced and sLRP1 is oxidized, which results in diminished Aβ peripheral binding and higher levels of free Aβ in plasma. Experimental studies have shown that free circulating Aβ re-enters the brain and that sLRP1 and/or its recombinant wild type cluster IV (WT-LRPIV) prevent Aβ from entering the brain.

View Article and Find Full Text PDF

Activated protein C (APC) is a protease with anticoagulant and cell-signaling activities. In the CNS, APC and its analogs with reduced anticoagulant activity but preserved cell signaling activities, such as 3K3A-APC, exert neuroprotective, vasculoprotective, and anti-inflammatory effects. Murine APC promotes subependymal neurogenesis in rodents in vivo after ischemic and traumatic brain injury.

View Article and Find Full Text PDF

Neurovascular dysfunction is an integral part of Alzheimer disease (AD). Changes in the brain vascular system may contribute in a significant way to the onset and progression of cognitive decline and the development of a chronic neurodegenerative process associated with accumulation of amyloid β-peptide (Aβ) in brain and cerebral vessels in AD individuals and AD animal models. Here, we review the role of the neurovascular unit and molecular mechanisms in cerebral vascular cells behind the pathogenesis of AD.

View Article and Find Full Text PDF

The blood-spinal cord barrier (BSCB) regulates molecular exchange between blood and spinal cord. Pericytes are presumed to be important cellular constituents of the BSCB. However, the regional abundance and vascular functions of spinal cord pericytes have yet to be determined.

View Article and Find Full Text PDF

The vascular system plays an integral role during Alzheimer's disease (AD). Both systemic circulatory changes and alterations directly within the brain vasculature have been suggested to contribute to both the onset and progression of neurological conditions such as AD. It is now well established that vascular risk factors including hypertension, diabetes, obesity, atherosclerosis, metabolic syndrome, and stroke significantly increase one's risk of later developing AD.

View Article and Find Full Text PDF