Publications by authors named "Robert C Mettelman"

The differentiation and specificity of human CD4 T follicular helper cells (T cells) after influenza vaccination have been poorly defined. Here we profiled blood and draining lymph node (LN) samples from human volunteers for over 2 years after two influenza vaccines were administered 1 year apart to define the evolution of the CD4 T cell response. The first vaccination induced an increase in the frequency of circulating T (cT) and LN T cells at week 1 postvaccination.

View Article and Find Full Text PDF

Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death.

View Article and Find Full Text PDF

Multisystem inflammatory syndrome in children (MIS-C) is a severe, post-infectious sequela of SARS-CoV-2 infection, yet the pathophysiological mechanism connecting the infection to the broad inflammatory syndrome remains unknown. Here we leveraged a large set of samples from patients with MIS-C to identify a distinct set of host proteins targeted by patient autoantibodies including a particular autoreactive epitope within SNX8, a protein involved in regulating an antiviral pathway associated with MIS-C pathogenesis. In parallel, we also probed antibody responses from patients with MIS-C to the complete SARS-CoV-2 proteome and found enriched reactivity against a distinct domain of the SARS-CoV-2 nucleocapsid protein.

View Article and Find Full Text PDF

Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies.

View Article and Find Full Text PDF

Evidence suggests that innate and adaptive cellular responses mediate resistance to the influenza virus and confer protection after vaccination. However, few studies have resolved the contribution of cellular responses within the context of preexisting antibody titers. Here, we measured the peripheral immune profiles of 206 vaccinated or unvaccinated adults to determine how baseline variations in the cellular and humoral immune compartments contribute independently or synergistically to the risk of developing symptomatic influenza.

View Article and Find Full Text PDF

Viruses infect millions of people each year. Both endemic viruses circulating throughout the population as well as novel epidemic and pandemic viruses pose ongoing threats to global public health. Developing more effective tools to address viruses requires not only in-depth knowledge of the virus itself but also of our immune system's response to infection.

View Article and Find Full Text PDF

The current strategy to detect immunodominant T cell responses focuses on the antigen, employing large peptide pools to screen for functional cell activation. However, these approaches are labor and sample intensive and scale poorly with increasing size of the pathogen peptidome. T cell receptors (TCRs) recognizing the same epitope frequently have highly similar sequences, and thus, the presence of large sequence similarity clusters in the TCR repertoire likely identify the most public and immunodominant responses.

View Article and Find Full Text PDF

Unlabelled: Current chimeric antigen receptor-modified (CAR) T-cell products are evaluated in bulk, without assessing functional heterogeneity. We therefore generated a comprehensive single-cell gene expression and T-cell receptor (TCR) sequencing data set using pre- and postinfusion CD19-CAR T cells from blood and bone marrow samples of pediatric patients with B-cell acute lymphoblastic leukemia. We identified cytotoxic postinfusion cells with identical TCRs to a subset of preinfusion CAR T cells.

View Article and Find Full Text PDF

The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments.

View Article and Find Full Text PDF
Article Synopsis
  • mRNA vaccines continue to be effective against severe COVID-19, but the emergence of new variants has led to the need for booster shots.
  • The study examines how repeated exposure to SARS-CoV-2 affects memory T cells, using advanced techniques to analyze T cell responses in people with varying exposure history (vaccination, infection, and breakthrough infection).
  • Results show that exposure order influences the types of T cell responses, with vaccination after infection boosting spike-specific T cell activity, while breakthrough infections enhance non-spike-specific responses, suggesting that both vaccination and breakthrough infections help expand and diversify memory T cell populations.
View Article and Find Full Text PDF

SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4 T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4 T (T) cell responses contribute to this outstanding immunogenicity. Using fine-needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we evaluated the T cell receptor sequences and phenotype of lymph node T.

View Article and Find Full Text PDF

Although mRNA vaccine efficacy against severe COVID-19 remains high, variant emergence and breakthrough infections have changed vaccine policy to include booster immunizations. However, the effect of diverse and repeated antigen exposures on SARS-CoV-2 memory T cells is poorly understood. Here, we utilize DNA-barcoded MHC-multimers combined with scRNAseq and scTCRseq to capture the profile of SARS-CoV-2-responsive T cells within a cohort of individuals with one, two, or three antigen exposures, including vaccination, primary infection, and breakthrough infection.

View Article and Find Full Text PDF

Coronaviruses express a multifunctional papain-like protease, termed papain-like protease 2 (PLP2). PLP2 acts as a protease that cleaves the viral replicase polyprotein and as a deubiquitinating (DUB) enzyme which removes ubiquitin (Ub) moieties from ubiquitin-conjugated proteins. Previous studies implicated PLP2/DUB activity as a negative regulator of the host interferon (IFN) response, but the role of DUB activity during virus infection was unknown.

View Article and Find Full Text PDF

Influenza viruses are a persistent threat to global human health. Increased susceptibility to infection and the risk factors associated with progression to severe influenza-related disease are determined by a multitude of viral, host, and environmental conditions. Decades of epidemiologic research have broadly defined high-risk groups, while new genomic association studies have identified specific host factors impacting an individual's response to influenza.

View Article and Find Full Text PDF

Feline coronavirus infection can progress to a fatal infectious peritonitis, which is a widespread feline disease without an effective vaccine. Generating feline cells with reduced ability to respond to interferon (IFN) is an essential step facilitating isolation of new candidate vaccine strains. Here, we describe the use of Crispr/Cas technology to disrupt type I IFN signaling in two feline cell lines, AK-D and Fcwf-4 CU, and evaluate the replication kinetics of a serotype I feline infectious peritonitis virus (FIPV) within these cells.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers analyzed temperature-sensitive mutant viruses to understand how genetic changes affect virus replication and disease development.
  • This study focuses on a specific strain of mouse hepatitis virus (MHV), examining key mutations in two protein domains to determine their role in the virus's temperature sensitivity.
  • Findings suggest that changes in the macrodomain are crucial for the temperature sensitivity, while mutations in the PLP2 domain affect the persistence of those macrodomain mutations but not temperature sensitivity, highlighting the interplay of these regions in viral infection and immune response.
View Article and Find Full Text PDF

SARS-coronavirus (CoV) is a zoonotic agent derived from rhinolophid bats, in which a plethora of SARS-related, conspecific viral lineages exist. Whereas the variability of virulence among reservoir-borne viruses is unknown, it is generally assumed that the emergence of epidemic viruses from animal reservoirs requires human adaptation. To understand the influence of a viral factor in relation to interspecies spillover, we studied the papain-like protease (PLP) of SARS-CoV.

View Article and Find Full Text PDF
Article Synopsis
  • Investigating type I feline coronaviruses (FCoVs) in tissue culture is essential for understanding their virology and how they interact with hosts, but these strains have difficulty adapting to cell cultures.
  • The study characterizes the replication and plaque formation of type I strain FIPV Black in a specialized cell line (Fcwf-4 CU), finding that high virus levels can be obtained by 20 hours post-infection.
  • It concludes that Fcwf-4 CU cells can be effectively used for standardized plaque assays and are morphologically and functionally different from other cell types, showing reduced sensitivity to interferon.
View Article and Find Full Text PDF
Article Synopsis
  • Coronaviruses produce double-stranded RNA (dsRNA) during replication but can avoid detection by the host's immune system, particularly through the actions of a protein called nsp15.
  • Research on two mutant coronaviruses lacking functional nsp15 showed poor replication and increased cell death in macrophages, leading to an enhanced immune response.
  • The study suggests that targeting nsp15 could lead to the development of live-attenuated vaccines as it plays a critical role in helping coronaviruses evade immune sensors.
View Article and Find Full Text PDF

Ubiquitin-like domain 2 (Ubl2) is immediately adjacent to the N-terminus of the papain-like protease (PLpro) domain in coronavirus polyproteins, and it may play a critical role in protease regulation and stability as well as in viral infection. However, our recent cellular studies reveal that removing the Ubl2 domain from MERS PLpro has no effect on its ability to process the viral polyprotein or act as an interferon antagonist, which involves deubiquitinating and deISGylating cellular proteins. Here, we test the hypothesis that the Ubl2 domain is not required for the catalytic function of MERS PLpro in vitro.

View Article and Find Full Text PDF

Gravid traps are commonly used by mosquito control agencies to collect local populations of Culex pipiens, which are then tested for the presence of West Nile virus. Culex pipiens adults disperse a relatively short distance (~2.5 km) from their breeding site, so it can be challenging to position a sufficient number of gravid traps to accurately monitor these mosquitoes in large urban areas.

View Article and Find Full Text PDF