Publications by authors named "Rino A Bit"

The bromodomain and extra terminal (BET) family of bromodomain-containing proteins are important epigenetic regulators that elicit their effect through binding histone tail -acetyl lysine (KAc) post-translational modifications. Recognition of such markers has been implicated in a range of oncology and immune diseases and, as such, small-molecule inhibition of the BET family bromodomain-KAc protein-protein interaction has received significant interest as a therapeutic strategy, with several potential medicines under clinical evaluation. This work describes the structure- and property-based optimization of a ligand and lipophilic efficient pan-BET bromodomain inhibitor series to deliver candidate I-BET787 () that demonstrates efficacy in a mouse model of inflammation and suitable properties for both oral and intravenous (IV) administration.

View Article and Find Full Text PDF

Through regulation of the epigenome, the bromodomain and extra terminal (BET) family of proteins represent important therapeutic targets for the treatment of human disease. Through mimicking the endogenous -acetyl-lysine group and disrupting the protein-protein interaction between histone tails and the bromodomain, several small molecule pan-BET inhibitors have progressed to oncology clinical trials. This work describes the medicinal chemistry strategy and execution to deliver an orally bioavailable tetrahydroquinoline (THQ) pan-BET candidate.

View Article and Find Full Text PDF

The functions of the bromodomain and extra terminal (BET) family of proteins have been implicated in a wide range of diseases, particularly in the oncology and immuno-inflammatory areas, and several inhibitors are under investigation in the clinic. To mitigate the risk of attrition of these compounds due to structurally related toxicity findings, additional molecules from distinct chemical series were required. Here we describe the structure- and property-based optimization of the tool molecule I-BET151 toward I-BET282E, a molecule with properties suitable for progression into clinical studies.

View Article and Find Full Text PDF

The bromodomain and extraterminal (BET) family of bromodomain-containing proteins are important regulators of the epigenome through their ability to recognize -acetyl lysine (KAc) post-translational modifications on histone tails. These interactions have been implicated in various disease states and, consequently, disruption of BET-KAc binding has emerged as an attractive therapeutic strategy with a number of small molecule inhibitors now under investigation in the clinic. However, until the utility of these advanced candidates is fully assessed by these trials, there remains scope for the discovery of inhibitors from new chemotypes with alternative physicochemical, pharmacokinetic, and pharmacodynamic profiles.

View Article and Find Full Text PDF

FTY720 is the first oral small molecule approved for the treatment of people suffering from relapsing-remitting multiple sclerosis. It is a potent agonist of the S1P1 receptor, but its lack of selectivity against the S1P3 receptor has been linked to most of the cardiovascular side effects observed in the clinic. These findings have triggered intensive efforts toward the identification of a second generation of S1P3-sparing S1P1 agonists.

View Article and Find Full Text PDF

This article describes the finding of substantial upregulation of mRNA and enzymes of the cytochrome P450 1A family during a lead optimization campaign for small molecule S1P1 agonists. Fold changes in mRNA up to 10,000-fold for CYP1A1 in vivo in rat and cynomolgus monkey and up to 45-fold for CYP1A1 and CYP1A2 in vitro in rat and human hepatocytes were observed. Challenges observed with correlating induction in vitro and induction in vivo resulted in the implementation of a short, 4 day in vivo screening study in the rat which successfully identified noninducers.

View Article and Find Full Text PDF

Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain "reader" modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9).

View Article and Find Full Text PDF

The efficacy of the recently approved drug fingolimod (FTY720) in multiple sclerosis patients results from the action of its phosphate metabolite on sphingosine-1-phosphate S1P1 receptors, while a variety of side effects have been ascribed to its S1P3 receptor activity. Although S1P and phospho-fingolimod share the same structural elements of a zwitterionic headgroup and lipophilic tail, a variety of chemotypes have been found to show S1P1 receptor agonism. Here we describe a study of the tolerance of the S1P1 and S1P3 receptors toward bicyclic heterocycles of systematically varied shape and connectivity incorporating acidic, basic, or zwitterionic headgroups.

View Article and Find Full Text PDF

2-Amino-2-(4-octylphenethyl)propane-1,3-diol 1 (fingolimod, FTY720) has been recently marketed in the United States for the treatment of patients with remitting relapsing multiple sclerosis (RRMS). Its efficacy has been primarily linked to the agonism on T cells of S1P(1), one of the five sphingosine 1-phosphate (S1P) G-protein-coupled receptors, while its cardiovascular side effects have been associated with activity at S1P(3). Emerging data suggest that the ability of this molecule to cross the blood-brain barrier and to interact with both S1P(1) and S1P(5) in the central nervous system (CNS) may contribute to its efficacy in treating patients with RRMS.

View Article and Find Full Text PDF

Gilenya (fingolimod, FTY720) was recently approved by the U.S. FDA for the treatment of patients with remitting relapsing multiple sclerosis (RRMS).

View Article and Find Full Text PDF

Optimization of the novel alpha-2-delta-1 ligand 4 provided compounds 37 and 38 which have improved DMPK profiles, good in vivo analgesic activity and in vitro selectivity over alpha-2-delta-2. An in-house P-gp prediction programme and the MetaSite software package were used to help solve the specific problems of high P-gp efflux and high in vivo clearance.

View Article and Find Full Text PDF

We describe the SAR, in terms of heterocyclic replacements, for a series of pyrazole EP(1) receptor antagonists. This study led to the identification of several aromatic heterocyclic replacements for the pyrazole in the original compound. Investigation of replacements for the methylene linker uncovered disparate SAR in the thiazole and pyridine series.

View Article and Find Full Text PDF

The discovery of a series of selective EP1 receptor antagonists based on a 1,2-diarylcyclopentene template is described. After defining the structural requirements for EP1 potency and selectivity, heterocyclic rings were incorporated to reduce logD and improve in vitro pharmacokinetic properties. The 2,6-substituted pyridines and pyridazines gave an appropriate balance of potency, in vivo pharmacokinetic properties and a low potential for inhibiting a range of CYP450 enzymes.

View Article and Find Full Text PDF

We describe the generation of novel EP(1) receptor antagonists by investigation of thiophene isosteres. In addition, we disclose preliminary in vitro and in vivo DMPK for selected compounds.

View Article and Find Full Text PDF

Starting from the tetrapeptide Ac-pYEEI-NHMe and using a structure-based approach, we have designed and synthesised a peptidomimetic ligand for p56(lck) SH2 domain containing a conformationally restricted replacement for the two glutamate residues. We have explored replacments for the isoleucine residue in the pY+3 pocket and thus identified 1-(R)-amino-3-(S)-indaneacetic acid as the most potent replacement. We also report the X-ray crystal structures of two of the antagonists.

View Article and Find Full Text PDF