Publications by authors named "Rinchen D Sherpa"

Background: We explored neurotoxic and genotoxic effects of Daminozide, a fruit ripening retardant, on the brain of Drosophila melanogaster, based on our previous finding of DNA fragmentation in larval brain cell in the flies experimentally exposed to this chemicals.

Methods: Adult flies were subjected to two distinct concentrations of daminozide (200 mg/L and 400 mg/L) mixed in culture medium, followed by an examination of specific behaviors such as courtship conditioning and aversive phototaxis, which serve as indicators of cognitive functions. We investigated brain histology and histochemistry to assess the overall toxicity of daminozide, focusing on neuron type-specific effects.

View Article and Find Full Text PDF

Cysteine is directly associated with a wide range of biological processes. Besides its essential role in protein synthesis, cysteine undergoes a variety of post-translational modifications which modulate several physiological processes. Dysregulated cysteine metabolism is associated with several neurodegenerative disorders.

View Article and Find Full Text PDF

Objectives: The long-term isolation, endogamy practices, and environmental adaptations have shaped the enormous human diversity in India. The genetic and morphological variations in mainland Indians are well studied. However, the data on the Indian Himalayan populations are scattered.

View Article and Find Full Text PDF

Dichloroacetic acid (DCA), an organohalide that present in environmental sample and biological systems, got high attention for its therapeutic potential as the inhibitor of pyruvate dehydrogenase kinase (PDK), elevated in obesity, diabetes, heart disease and cancer. Herein, we developed a Cobalt conjugated carbon quantum dots (N-CQDs/Co) that selectively detect DCA by fluorescence "turn-on" mechanism. Utilizing TEM, DLS, UV-vis and fluorescence spectroscopy, the mechanism has been thoroughly elucidated and is attributed to disaggregation induced enhancement (DIE).

View Article and Find Full Text PDF

Implementing different tools and injury mechanisms in multiple animal models of retina regeneration, researchers have discovered the existence of retinal stem/progenitor cells. Although they appear to be distributed uniformly across the vertebrate lineage, the reparative potential of the retina is mainly restricted to lower vertebrates. Regenerative repair post-injury requires the creation of a proliferative niche, vital for proper stem cell activation, propagation, and lineage differentiation.

View Article and Find Full Text PDF