Ecological impacts of tire wear particles (TWPs) on microbial communities and biogeochemical cycles in freshwater remain largely unknown. Here, we conducted a microcosm experiment to investigate interactions between the overlying water and sediment without and with TWPs addition in a rural vs. urban lake system.
View Article and Find Full Text PDFLichens are symbiotic organisms with unique secondary metabolism. Various metabolites from lichens have shown antimicrobial activity. Nevertheless, very few studies have investigated the antimicrobial potential of the volatile compounds they produce.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2024
In Morocco, red fruit production has thrived, primarily utilizing hydroponic methods to control crops, increase fruit yield and quality, and avoid soil-related problems. However, the irrigation of these expansive hydroponic farms relies heavily on water sourced from dams, many of which are contaminated with Microcystins (MCs). To address this contamination issue, ongoing research is focused on discovering effective and cost-efficient biological solutions for eliminating MCs.
View Article and Find Full Text PDFMicrocystins (MCs), natural hepatotoxic compounds produced by cyanobacteria, pose significant risks to water quality, ecosystem stability, and the well-being of animals, plants, and humans when present in elevated concentrations. The escalating contamination of irrigation water with MCs presents a growing threat to terrestrial plants. The customary practice of irrigating crops from local water sources, including lakes and ponds hosting cyanobacterial blooms, serves as a primary conduit for transferring these toxins.
View Article and Find Full Text PDFMicrocystins (MCs) constitute a significant threat to human and environmental health, urging the development of effective removal methods for these toxins. In this review, we explore the potential of MC-degrading bacteria as a solution for the removal of MCs from water. The review insights into the mechanisms of action employed by these bacteria, elucidating their ability to degrade and thus remove MCs.
View Article and Find Full Text PDFMicrocystins (MCs) are cyanobacterial toxins that can negatively impact human and animal health. This study investigated the bioaccumulation, transfer, depuration, and health risks of MCs in strawberry plants (Fragaria vulgaris) and Meriones shawi animals. The plants were irrigated with 1, 5, 10, and 20 μg/L MCs for 60 days (bioaccumulation phase) and then with clean water for 30 days (depuration phase).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2023
The health risks linked to the consumption of microcystin-accumulating crops have been increasing worldwide in toxic cyanobloom-occurring regions. The bioaccumulation of microcystins (MCs) in agricultural produce at environmentally realistic concentrations is poorly investigated. In this field study, we assessed the health risks of MCs in raw water used for irrigating fruit crops (bioaccumulation) and watering farm animals in the Lalla Takerkoust agricultural region (Marrakesh, Morocco).
View Article and Find Full Text PDFResearch on Plant Growth-Promoting Bacteria (PGPB) has focused much more on rhizospheric bacteria. However, PGPB associated with toxic cyanobacterial bloom (TCB) could enter the rhizosphere through irrigation water, helping plants such as Pisum sativum L. (pea) overcome oxidative stress induced by microcystin (MC) and improve plant growth and nutritional value.
View Article and Find Full Text PDFOver the last years, the use of artificial lakes and ponds to irrigate agricultural crops has been intensified and cultivation methods have been diversified. Hydroponics is a type of hydroculture which usually involves growing plants in an inert substrate, by using nutrient-enriched water to support plant growth. However, irrigating plants in hydroponic-based culture must be accompanied by monitoring the quality of irrigation water.
View Article and Find Full Text PDFMicroorganisms
August 2021
Frequent toxic cyanoblooms in eutrophic freshwaters produce various cyanotoxins such as the monocyclic heptapeptides microcystins (MCs), known as deleterious compounds to plant growth and human health. Recently, MCs are a recurrent worldwide sanitary problem in irrigation waters and farmland soils due to their transfer and accumulation in the edible tissues of vegetable produce. In such cases, studies about the persistence and removal of MCs in soil are scarce and not fully investigated.
View Article and Find Full Text PDFThe application of natural compounds extracted from seaweeds is a promising eco-friendly alternative solution for harmful algae control in aquatic ecosystems. In the present study, the anti-cyanobacterial activity of three Moroccan marine macroalgae essential oils (EOs) was tested and evaluated on unicellular cyanobacterium. Additionally, the possible anti-cyanobacterial response mechanisms were investigated by analyzing the antioxidant enzyme activities of cells.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2021
In recent decades, harmful cyanobacterial blooms (HCBs) have become a severe hazard for human health mainly in drinking water resources and are responsible for serious ecological disturbances in freshwater ecosystems. The present study aims to explore the potential of actinobacteria isolated from sediment samples collected from Moroccan salt river to control HCBs mainly through Microcystis aeruginosa lysis. In order to investigate the possible anti-cyanobacterial response mechanisms, the antioxidant enzyme activities of M.
View Article and Find Full Text PDFOver the last decades, Harmful Cyanobacterial Blooms (HCBs) represent one of the most conspicuous hazards to human health in freshwater ecosystems, due to the uses of the water for drinking, recreation and aquaculture. Cyanobacteria are one of the main biological components in freshwater ecosystems and they may proliferate in nutrients rich ecosystems causing severe impacts at different levels. Therefore, several methods have been applied to control cyanobacterial proliferation, including physical, chemical and biological strategies.
View Article and Find Full Text PDF