Publications by authors named "Richard A Feely"

Ocean acidification has been identified in the Planetary Boundary Framework as a planetary process approaching a boundary that could lead to unacceptable environmental change. Using revised estimates of pre-industrial aragonite saturation state, state-of-the-art data-model products, including uncertainties and assessing impact on ecological indicators, we improve upon the ocean acidification planetary boundary assessment and demonstrate that by 2020, the average global ocean conditions had already crossed into the uncertainty range of the ocean acidification boundary. This analysis was further extended to the subsurface ocean, revealing that up to 60% of the global subsurface ocean (down to 200 m) had crossed that boundary, compared to over 40% of the global surface ocean.

View Article and Find Full Text PDF

Kelps are recognized for providing many ecosystem services in coastal areas and considered in ocean acidification (OA) mitigation. However, assessing OA modification requires an understanding of the multiple parameters involved in carbonate chemistry, especially in highly dynamic systems. We studied the effects of sugar kelp (Saccharina latissima) on an experimental farm at the north end of Hood Canal, Washington-a low retentive coastal system.

View Article and Find Full Text PDF

The 2021 summer upwelling season off the United States Pacific Northwest coast was unusually strong leading to widespread near-bottom, low-oxygen waters. During summer 2021, an unprecedented number of ship- and underwater glider-based measurements of dissolved oxygen were made in this region. Near-bottom hypoxia, that is dissolved oxygen less than 61 µmol kg and harmful to marine animals, was observed over nearly half of the continental shelf inshore of the 200-m isobath, covering 15,500 square kilometers.

View Article and Find Full Text PDF

The Arctic Ocean has experienced rapid warming and sea ice loss in recent decades, becoming the first open-ocean basin to experience widespread aragonite undersaturation [saturation state of aragonite (Ω) < 1]. However, its trend toward long-term ocean acidification and the underlying mechanisms remain undocumented. Here, we report rapid acidification there, with rates three to four times higher than in other ocean basins, and attribute it to changing sea ice coverage on a decadal time scale.

View Article and Find Full Text PDF

Global change is impacting the oceans in an unprecedented way, and multiple lines of evidence suggest that species distributions are changing in space and time. There is increasing evidence that multiple environmental stressors act together to constrain species habitat more than expected from warming alone. Here, we conducted a comprehensive study of how temperature and aragonite saturation state act together to limit Limacina helicina, globally distributed pteropods that are ecologically important pelagic calcifiers and an indicator species for ocean change.

View Article and Find Full Text PDF

Coastal-estuarine habitats are rapidly changing due to global climate change, with impacts influenced by the variability of carbonate chemistry conditions. However, our understanding of the responses of ecologically and economically important calcifiers to pH variability and temporal variation is limited, particularly with respect to shell-building processes. We investigated the mechanisms driving biomineralogical and physiological responses in juveniles of introduced (Pacific; ) and native (Olympia; ) oysters under flow-through experimental conditions over a six-week period that simulate current and future conditions: static control and low pH (8.

View Article and Find Full Text PDF

Global change is leading to warming, acidification, and oxygen loss in the ocean. In the Southern California Bight, an eastern boundary upwelling system, these stressors are exacerbated by the localized discharge of anthropogenically enhanced nutrients from a coastal population of 23 million people. Here, we use simulations with a high-resolution, physical-biogeochemical model to quantify the link between terrestrial and atmospheric nutrients, organic matter, and carbon inputs and biogeochemical change in the coastal waters of the Southern California Bight.

View Article and Find Full Text PDF

Shelled pteropods are widely regarded as bioindicators for ocean acidification, because their fragile aragonite shells are susceptible to increasing ocean acidity. While short-term incubations have demonstrated that pteropod calcification is negatively impacted by ocean acidification, we know little about net calcification in response to varying ocean conditions in natural populations. Here, we examine in situ calcification of Limacina helicina pteropods collected from the California Current Ecosystem, a coastal upwelling system with strong spatial gradients in ocean carbonate chemistry, dissolved oxygen and temperature.

View Article and Find Full Text PDF

Estuaries are recognized as one of the habitats most vulnerable to coastal ocean acidification due to seasonal extremes and prolonged duration of acidified conditions. This is combined with co-occurring environmental stressors such as increased temperature and low dissolved oxygen. Despite this, evidence of biological impacts of ocean acidification in estuarine habitats is largely lacking.

View Article and Find Full Text PDF
Article Synopsis
  • * Factors like strong stratification and eutrophication in estuaries can magnify the effects of acidification on aquatic environments.
  • * The article reviews various processes affecting the acid-base balance in estuaries and highlights case studies from Chesapeake Bay, the Salish Sea, and Prince William Sound to show the diverse impacts of OA on marine life.
View Article and Find Full Text PDF

Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth-ocean-atmosphere dynamic exchange of elements. The ratios' dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally.

View Article and Find Full Text PDF

Syntheses of carbonate chemistry spatial patterns are important for predicting ocean acidification impacts, but are lacking in coastal oceans. Here, we show that along the North American Atlantic and Gulf coasts the meridional distributions of dissolved inorganic carbon (DIC) and carbonate mineral saturation state (Ω) are controlled by partial equilibrium with the atmosphere resulting in relatively low DIC and high Ω in warm southern waters and the opposite in cold northern waters. However, pH and the partial pressure of CO (pCO) do not exhibit a simple spatial pattern and are controlled by local physical and net biological processes which impede equilibrium with the atmosphere.

View Article and Find Full Text PDF

Ocean acidification (OA) along the US West Coast is intensifying faster than observed in the global ocean. This is particularly true in nearshore regions (<200 m) that experience a lower buffering capacity while at the same time providing important habitats for ecologically and economically significant species. While the literature on the effects of OA from laboratory experiments is voluminous, there is little understanding of present-day OA in-situ effects on marine life.

View Article and Find Full Text PDF

The ocean's chemistry is changing due to the uptake of anthropogenic carbon dioxide (CO). This phenomenon, commonly referred to as "Ocean Acidification", is endangering coral reefs and the broader marine ecosystems. In this study, we combine a recent observational seawater CO data product, i.

View Article and Find Full Text PDF

We quantify the oceanic sink for anthropogenic carbon dioxide (CO) over the period 1994 to 2007 by using observations from the global repeat hydrography program and contrasting them to observations from the 1990s. Using a linear regression-based method, we find a global increase in the anthropogenic CO inventory of 34 ± 4 petagrams of carbon (Pg C) between 1994 and 2007. This is equivalent to an average uptake rate of 2.

View Article and Find Full Text PDF

Infantile idiopathic scoliosis is a compensatory result of cranial and sacral intraosseous dysfunction associated with asymmetric developmental deformation of the occiput, leading to dysfunction of the sphenobasilar synchondrosis. A female infant with progressive infantile idiopathic scoliosis diagnosed at age 12 months (46.9° left scoliotic curve) initially received standard orthopedic care, including casting.

View Article and Find Full Text PDF

This work describes an improved algorithm for spectrophotometric determinations of seawater carbonate ion concentrations ([CO]) derived from observations of ultraviolet absorbance spectra in lead-enriched seawater. Quality-control assessments of [CO] data obtained on two NOAA research cruises (2012 and 2016) revealed a substantial intercruise difference in average Δ[CO] (the difference between a sample's [CO] value and the corresponding [CO] value calculated from paired measurements of pH and dissolved inorganic carbon). Follow-up investigation determined that this discordance was due to the use of two different spectrophotometers, even though both had been properly calibrated.

View Article and Find Full Text PDF

Resource managers at the state, federal, and tribal levels make decisions on a weekly to quarterly basis, and fishers operate on a similar timeframe. To determine the potential of a support tool for these efforts, a seasonal forecast system is experimented with here. JISAO's Seasonal Coastal Ocean Prediction of the Ecosystem (J-SCOPE) features dynamical downscaling of regional ocean conditions in Washington and Oregon waters using a combination of a high-resolution regional model with biogeochemistry and forecasts from NOAA's Climate Forecast System (CFS).

View Article and Find Full Text PDF

Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Ω(ar)).

View Article and Find Full Text PDF

Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.

View Article and Find Full Text PDF

Measurements of ocean pH and carbonate ion concentrations in the North Pacific and Arctic Oceans were used to determine calcium carbonate saturation states (Ω(CaCO(3))) from spectrophotometric methods alone. Total carbonate ion concentrations, [CO(3)(2-)](T), were for the first time at sea directly measured using Pb(II) UV absorbance spectra. The basis of the method is given by the following: [formula see text] where (CO(3))β(1) is the PbCO(3)(0) formation constant, e(i) are molar absorptivity ratios, and R = (250)A/(234)A (ratio of absorbances measured at 250 and 234 nm).

View Article and Find Full Text PDF

Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds.

View Article and Find Full Text PDF

The absorption of atmospheric carbon dioxide (CO2) into the ocean lowers the pH of the waters. This so-called ocean acidification could have important consequences for marine ecosystems. To better understand the extent of this ocean acidification in coastal waters, we conducted hydrographic surveys along the continental shelf of western North America from central Canada to northern Mexico.

View Article and Find Full Text PDF

Fossil fuel combustion and agriculture result in atmospheric deposition of 0.8 Tmol/yr reactive sulfur and 2.7 Tmol/yr nitrogen to the coastal and open ocean near major source regions in North America, Europe, and South and East Asia.

View Article and Find Full Text PDF