Mendel studied in detail seven pairs of contrasting traits in pea (Pisum sativum), establishing the foundational principles of genetic inheritance. Here we investigate the genetic architecture that underlies these traits and uncover previously undescribed alleles for the four characterized Mendelian genes, including a rare revertant of Mendel's white-flowered a allele. Primarily, we focus on the three remaining uncharacterized traits and find that (1) an approximately 100-kb genomic deletion upstream of the Chlorophyll synthase (ChlG) gene disrupts chlorophyll biosynthesis through the generation of intergenic transcriptional fusion products, conferring the yellow pod phenotype of gp mutants; (2) a MYB gene with an upstream Ogre element insertion and a CLE peptide-encoding gene with an in-frame premature stop codon explain the v and p alleles, which disrupt secondary cell wall thickening and lignification, resulting in the parchmentless, edible-pod phenotype; and (3) a 5-bp exonic deletion in a CIK-like co-receptor kinase gene, in combination with a genetic modifier locus, is associated with the fasciated stem (fa) phenotype.
View Article and Find Full Text PDFSugar beet () is grown in temperate regions around the world as a source of sucrose used for natural sweetening. Sugar beet is susceptible to a number of viral diseases, but identification of the causal agent(s) under field conditions is often difficult due to mixtures of viruses that may be responsible for disease symptoms. In this study, the application of RNAseq to RNA extracted from diseased sugar beet roots obtained from the field and from greenhouse-reared plants grown in soil infested with the virus disease rhizomania (causal agent beet necrotic yellow vein virus; BNYVV) yielded genome-length sequences from BNYVV, as well as beet soil-borne virus (BSBV).
View Article and Find Full Text PDFCircadian clocks are important for an individual's fitness, and recent studies have underlined their role in the outcome of biological interactions. However, the relevance of circadian clocks in fungal-fungal interactions remains largely unexplored. We sought to characterize a functional clock in the biocontrol agent to assess its importance in the mycoparasitic interaction against the phytopathogen .
View Article and Find Full Text PDFCercospora leaf spot (CLS) is a globally important disease of sugar beet () caused by the fungus . Long-distance movement of has been indirectly evidenced in recent population genetic studies, suggesting potential dispersal via seed. Commercial sugar beet "seed" consists of the reproductive fruit (true seed surrounded by maternal pericarp tissue) coated in artificial pellet material.
View Article and Find Full Text PDFThe rapid and widespread evolution of fungicide resistance remains a challenge for crop disease management. The demethylation inhibitor (DMI) class of fungicides is a widely used chemistry for managing disease, but there has been a gradual decline in efficacy in many crop pathosystems. Reliance on DMI fungicides has increased resistance in populations of the plant pathogenic fungus Cercospora beticola worldwide.
View Article and Find Full Text PDFCercospora beticola is a hemibiotrophic fungus that causes cercospora leaf spot disease of sugar beet (Beta vulgaris). After an initial symptomless biotrophic phase of colonization, necrotic lesions appear on host leaves as the fungus switches to a necrotrophic lifestyle. The phytotoxic secondary metabolite cercosporin has been shown to facilitate fungal virulence for several Cercospora spp.
View Article and Find Full Text PDFUnlabelled: Cercospora leaf spot, caused by the fungal pathogen Cercospora beticola, is the most destructive foliar disease of sugar beet worldwide. This review discusses C. beticola genetics, genomics, and biology and summarizes our current understanding of the molecular interactions that occur between C.
View Article and Find Full Text PDFCercospora leaf spot (CLS), caused by the fungal pathogen , is the most destructive disease of sugar beet worldwide. Although growing CLS-tolerant varieties is helpful, disease management currently requires timely application of fungicides. However, overreliance on fungicides has led to the emergence of fungicide resistance in many populations, resulting in multiple epidemics in recent years.
View Article and Find Full Text PDFPerylenequinones are a family of structurally related polyketide fungal toxins with nearly universal toxicity. These photosensitizing compounds absorb light energy which enables them to generate reactive oxygen species that damage host cells. This potent mechanism serves as an effective weapon for plant pathogens in disease or niche establishment.
View Article and Find Full Text PDFMultilayered defense responses ensure that plants are hosts to only a few adapted pathogens in the environment. The host range of a plant pathogen depends on its ability to fully overcome plant defense barriers, with failure at any single step sufficient to prevent life cycle completion of the pathogen. Puccinia striiformis, the causal agent of stripe rust (=yellow rust), is an agronomically important obligate biotrophic fungal pathogen of wheat and barley.
View Article and Find Full Text PDFSpecies in the genus cause economically devastating diseases in sugar beet, maize, rice, soy bean, and other major food crops. Here, we sequenced the genome of the sugar beet pathogen and found it encodes 63 putative secondary metabolite gene clusters, including the cercosporin toxin biosynthesis () cluster. We show that the gene cluster has experienced multiple duplications and horizontal transfers across a spectrum of plant pathogenic fungi, including the wide-host range genus as well as the rice pathogen Although cercosporin biosynthesis has been thought to rely on an eight-gene cluster, our phylogenomic analysis revealed gene collinearity adjacent to the established cluster in all cluster-harboring species.
View Article and Find Full Text PDFAmong a set of genes in pea (Pisum sativum L.) that were induced under drought-stress growth conditions, one encoded a protein with significant similarity to a regulator of chlorophyll catabolism, SGR. This gene, SGRL, is distinct from SGR in genomic location, encoded carboxy-terminal motif, and expression through plant and seed development.
View Article and Find Full Text PDF