Front Behav Neurosci
October 2021
A growing body of evidence suggests that memories of fearful events may be altered after initial acquisition or learning. Although much of this work has been done in rodents using Pavlovian fear conditioning, it may have important implications for fear memories in humans such as in post-traumatic stress disorder (PTSD). A recent study suggested that cued fear memories, made labile by memory retrieval, were made additionally labile and thus more vulnerable to subsequent modification when mice inhaled 10% carbon dioxide (CO) during retrieval.
View Article and Find Full Text PDFPrimary cilia are microtubule-based organelles present on most cells that regulate many physiological processes, ranging from maintaining energy homeostasis to renal function. However, the role of these structures in the regulation of behavior remains unknown. To study the role of cilia in behavior, we employ mouse models of the human ciliopathy, Bardet-Biedl Syndrome (BBS).
View Article and Find Full Text PDFObjective: A hallmark of migraine is photophobia. In mice, photophobia-like behavior is induced by calcitonin gene-related peptide (CGRP), a neuropeptide known to be a key player in migraine. In this study, we sought to identify sites within the brain from which CGRP could induce photophobia.
View Article and Find Full Text PDFMicrotubule-associated protein tau associates with Src family tyrosine kinase Fyn and is tyrosine phosphorylated by Fyn. The presence of tyrosine phosphorylated tau in AD and the involvement of Fyn in AD has drawn attention to the tau-Fyn complex. In this study, a tau-Fyn double knockout (DKO) mouse was generated to investigate the role of the complex.
View Article and Find Full Text PDFRationale: Precise regulation of cerebral blood flow is critical for normal brain function. Insufficient cerebral blood flow contributes to brain dysfunction and neurodegeneration. Carbon dioxide (CO), via effects on local acidosis, is one of the most potent regulators of cerebral blood flow.
View Article and Find Full Text PDFGenes Brain Behav
September 2019
Pavlovian fear conditioning has been shown to depend on acid-sensing ion channel-1A (ASIC1A); however, it is unknown whether conditioning to rewarding stimuli also depends on ASIC1A. Here, we tested the hypothesis that ASIC1A contributes to Pavlovian conditioning to a non-drug reward. We found effects of ASIC1A disruption depended on the relationship between the conditional stimulus (CS) and the unconditional stimulus (US), which was varied between five experiments.
View Article and Find Full Text PDFCa-binding protein 1 (CaBP1) is a Ca-sensing protein similar to calmodulin that potently regulates voltage-gated Ca channels. Unlike calmodulin, however, CaBP1 is mainly expressed in neuronal cell-types and enriched in the hippocampus, where its function is unknown. Here, we investigated the role of CaBP1 in hippocampal-dependent behaviors using mice lacking expression of CaBP1 (C-KO).
View Article and Find Full Text PDFAttenuating the strength of fearful memories could benefit people disabled by memories of past trauma. Pavlovian conditioning experiments indicate that a retrieval cue can return a conditioned aversive memory to a labile state. However, means to enhance retrieval and render a memory more labile are unknown.
View Article and Find Full Text PDFFront Neurosci
August 2015
Mice display an unconditioned freezing response to TMT, a predator odor isolated from fox feces. Here we found that in addition to freezing, TMT caused mice to decrease breathing rate, perhaps because of the aversive smell. Consistent with this possibility, olfactory bulb lesions attenuated this effect of TMT, as well as freezing.
View Article and Find Full Text PDFCarbon dioxide (CO2) inhalation lowers brain pH and induces anxiety, fear, and panic responses in humans. In mice, CO2 produces freezing and avoidance behavior that has been suggested to depend on the amygdala. However, a recent study in humans with bilateral amygdala lesions revealed that CO2 can trigger fear and panic even in the absence of amygdalae, suggesting the importance of extra-amygdalar brain structures.
View Article and Find Full Text PDFAcid-sensing ion channel 1A (ASIC1A) is abundant in the nucleus accumbens (NAc), a region known for its role in addiction. Because ASIC1A has been suggested to promote associative learning, we hypothesized that disrupting ASIC1A in the NAc would reduce drug-associated learning and memory. However, contrary to this hypothesis, we found that disrupting ASIC1A in the mouse NAc increased cocaine-conditioned place preference, suggesting an unexpected role for ASIC1A in addiction-related behavior.
View Article and Find Full Text PDFWhy do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease.
View Article and Find Full Text PDF